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We examine the bebavior of measured variances
from the options market and the underlying stock
market. Under the joint bypothbeses that markets
are informationally efficient and that option prices
are explained by a particular asset pricing model,
Jforecasts from time-series models of the stock-
return process should not bave predictive content
given the market forecast as embodied in option
prices. Both in-sample and out-of-sample tests sug-
gest that this bypotbesis can be rejected. Using sim-
ulations, we show that biases inberent in the pro-
cedure we use to imply variances cannot explain
this result. Thus, we provide evidence inconsistent
with the ortbogonality restrictions of option pric-
ing models that assume that variance risk is
unpriced. These results also bave implications for
optimal variance forecast rules.

According to the Black and Scholes (1973) model of
option valuation, equilibrium option prices are deter-
mined by the absence of arbitrage profits. This con-
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dition depends on the assumption that the variance of the underlying
stock returns is constant over time or deterministically changing
through time. The model is 2 powerful economic tool because market
behavior can be understood without explicitly specifying and esti-
mating preferences of agents.

A problem with the empirical implementation of the Black-Scholes
model is that the variance assumption is inconsistent with the data.
Since stochastic volatility is manifest in time-series models of stock
returns as well as in the empirical variances implied from the Black-
Scholes model itself, models of option pricing have been developed
in which the variance of the underlying asset returns varies randomly
through time. Hull and White (1987) derive a closed-form solution
for European call option prices under the assumption that volatility
risk is unpriced. They show that, given certain conditions on the
stochastic process governing underlying returns, the option price
equals the expected value of the Black-Scholes price over the dis-
tribution of average variance.

While the stochastic volatility generalization has been shown by
Hull and White (1987) and others to improve the explanatory power
of the Black-Scholes model, the full implications of the stochastic
volatility option pricing models have not been adequately tested. In
particular, a clear test of whether the strong assumption of market
indifference to volatility risk is consistent with the data is missing in
the empirical finance literature. Although this assumption may be
unattractive from a theoretical perspective, it does afford simplifica-
tion of both valuation and variance extraction, and the model lends
itself to unambiguous empirical testing. We examine this issue by
testing an important implication of the class of models represented
by Hull and White (1987) in which volatility risk is unpriced. If option
markets are informationally efficient, then information available at the
time market prices are set cannot be used to predict actual return
variance better than the variance forecast embedded in the option
price, which represents the subjective expectation of the market. That
is, the forecast error of the subjective expectation should be orthog-
onal to all available information.

To test this orthogonality restriction, we interpret the variance
implied from equating the observed market option price to the Hull
and White model price as the market’s assessment of return variance.
However, implying a variance from the closed-form expression of
Hull and White may distort, or bias, the market forecast, even assum-
ing that the joint null hypothesis is true since the Black-Scholes
formula is nonlinear (Jensen’s inequality) and the variance and stock
processes may be instantaneously correlated. We carefully calibrate
simulations of the stock-price and variance processes for each of the
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stocks in the sample to examine the extent to which such bias exists.
The simulations demonstrate that this distortion is trivial for our sam-
ple of at-the-money options. Furthermore, we couch our statistical
inference in the context of the simulations to account for the possible
sources of distortion. This procedure enables us to refer to our empir-
ical exercise as a formal test of an asset pricing model. If we did not
control for the distortion or couch our inference in terms of this
distortion, our exercise would simply be an examination of the extent
to which filtering the options and stock-price data with the Black-
Scholes model has information.

We test the orthogonality restriction for at-the-money call options
on individual stocks by comparing the forecast performance of the
implied variance from the model with time-series representations of
stock-return volatility. We use a simple time-series model of serial
dependence in volatility, the generalized autoregressive conditional
heteroskedasticity (GARCH) process of Engle (1982) and Bollerslev
(1986), to capture available information that can explain the evolution
of return variance. Two types of tests of the orthogonality restriction
are performed: in-sample and out-of-sample. The in-sampie, regres-
sion-based tests incorporate the implied variance into the GARCH
equation of the return process to measure the marginal predictive
power of past information on variance. We then compare the out-of-
sample forecast performance of the implied variance with time-series
models using standard measures of average forecast error and encom-
passing regressions. The out-of-sample encompassing analysis helps
us to explore an important issue: regardless of the outcome of tests
of the orthogonality restrictions, does filtering market data through
the model provide information about the future evolution of return
variance that is not evident in the past time series of stock returns?
This issue is relevant to constructing optimal variance forecast rules.

Our research design differs from most previous tests of stochastic
volatility option pricing models. Melino and Turnbull (1990), for
example, test such a model for foreign exchange options. They esti-
mate a stochastic volatility process for the underlying asset, then price
options on this asset using the parameters from the process and the
option pricing model. This price is found to predict the actual option
price better than a constant variance price. However, they also find
that current information can explain some of the model’s forecast
error. By testing the implications of the option pricing model in
measures of variance rather than option price, we exploit different
information than Melino and Turnbull to test the orthogonality restric-
tions. More importantly, our forecast comparisons are performed ulti-
mately out-of-sample. Out-of-sample analysis is more natural than
in-sample analysis for scrutinizing models that depend on the infor-
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mation set of agents at any point in time, since the econometrician’s
conditioning set is a proper subset of the information available to the
agents in the economy.

Our work in this article complements concurrent, independent
research by Day and Lewis (1992), which also compares implied
volatilities from option pricing models with GARCH models. Essen-
tially four major differences occur in the articles. (1) We broaden the
data sample by using daily data on individual stocks, whereas Day
and Lewis use weekly data on stock indices. (2) As noted, we provide
simulation evidence to quantify the extent to which implying vari-
ances under Black-Scholes distorts the actual variance forecast under
the null hypothesis for each stock in our sample. Thus, unlike Day
and Lewis we interpret our analysis as a formal test of a specific asset
pricing model. (3) Given the daily frequency of data, we are better
able than Day and Lewis to adjust for the inconsistencies between
the forecast horizons of the time-series models and the maturity of
the options in the sample. (4) Perhaps most importantly, we take
considerable care to purge problems related to measurement error
by effectively using intraday data to construct the daily series. Day
and Lewis, for example, use closing prices in both option and stock
markets, which do not even close at the same time. To attenuate this
problem, they imply the price of the underlying asset from the option
price, under the assumption that the model which they are testing is
true. Because our data are carefully mapped into our research design,
we substantially reduce these errors-in-variables problems.

Although our empirical strategy is discussed in the context of the
model developed by Hull and White (1987), we wish to emphasize
that we do not attempt to test all of the implications of their model.
These authors were interested in explaining the biases of the Black-
Scholes restrictions when volatility is stochastic as a function of
moneyness and maturity of the option. This aim requires exploiting
a broader range of options than we use to infer moments beyond the
mean of the subjective distribution of variance. Our strategy is to
focus solely on the orthogonality restrictions implied by this class of
models, hence our reliance on the market’s expectation of return
variance. In other words, we are not testing the null hypothesis that
Black-Scholes is true against the stochastic variance alternative. We
are treating the stochastic volatility option pricing model as a special
case of more general models of asset pricing that include the pos-
sibility of pricing volatility risk.

Both the in-sample tests and the out-of-sample encompassing tests
suggest that, while the implied variance helps predict future volatility,
the orthogonality restriction of the joint null hypothesis is rejected.
One possible reason for the rejection of the null is that volatility risk
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is priced. Therefore, further attempts to learn from the data should
explicitly model a risk premium on the variance process, as in Heston
(1993), for example. Assuming constant relative-risk aversion and
using a Fourier inversion formula [Stein and Stein (1991)], Heston
has obtained a closed-form expression for an option on an asset with
stochastic volatility that allows for the volatility process to be priced.

In the following section, we lay out the analytical framework of the
study. We describe the Hull and White (1987) model, state explicitly
the orthogonality restrictions that it implies jointly with the assump-
tion of market efficiency, and outline the general test strategy. We
also characterize stochastic volatility in the data by using the GARCH
model, and we report simulation results to quantify certain biases in
our implied variances. In Section 2, we describe the options data used
in this study, the specific in-sample and out-of-sample tests of the
orthogonality restriction undertaken, and the results from these tests.
We offer conclusions in Section 3.

. Analytical Framework

1.1 Theoretical model and test strategy

The framework for the empirical analysis in this article is the model
developed by Hull and White (1987), which is an application of
Garman (1976). The model represents the class of stochastic volatility
options pricing models, including those of Scott (1987), Wiggins
(1987), and Johnson and Shanno (1987), that assumes volatility risk
does not affect the option price. The Hull-White (HW) model is based
upon the following continuous-time process for the underlying stock:

ds = ¢S dt + VVS du, (1)
dV=puVdt+ £V dz, 2)

where S is the stock price, and the Brownian motions dw and dz
have an instantaneous correlation of p. Under the assumption that
volatility risk is not priced and p = 0, a call option on this stock at
time ¢ will be priced as

p.=[BS(W)B(V, | 1) dV,=E[BS(V) | I}, (3)

1 T
V, di
T_ tJ: i l;

b(V, | V) is the density of 7, conditional on the current V,, T is the
expiration date of the option, I, is the information set at time #, and

where

AV
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BS(-) is the Black-Scholes pricing formula. Thus, the HW price is
the mean Black-Scholes price, evaluated over the conditional distri-
bution of average variance V,.

To price options according to (3), market participants must form
asubjective conditional density onV,. If these participants are rational,
then the subjective density of the market equals the actual density,
b(V, | 1). The focus of our study is on the mean of this distribution:

EW, | ) =[Vh(, | 1) av,
The average variance can be decomposed as
vtz E(‘Z | ]t) + W,

where u, is orthogonal to the conditional expectation and, therefore,
to any information available to agents up to time ¢ Thus, if option
market participants are rational (in the mean sense), then the sub-
jective mean, EX(V, | 1), equals the actual mean, E(V, | 1), and the
subjective forecast error, u{=V, — E<(V, | 1), is orthogonal to all
available information. This orthogonality condition is tested in this
article.

The market’s conditional expectation of variance is not directly
observable. But given market prices on options, the HW model implies
a variance that can be used to estimate the expectation. Because the
variance of the underlying asset is the only unknown argument in the
Black-Scholes formula, the implied variance (discussed in more detail
later) is the value of that argument that equates the market price to
the theoretical Black-Scholes price. It is evident from (3) that the
implied variance is not in general a good predictor of the market’s
evaluation of variance, since the conditional density »is unaccounted
for. However, Cox and Rubinstein (1985, p. 218, figure 5, 6) show
that the Black-Scholes formula is essentially a linear function of the
standard deviation for at-the-money options, so that E[BS(V,) | I,]
approximately equals BS[E(V}) | £,].! For this reason, we use a sample
of at-the-money options and therefore interpret the implied variance
as the market’s assessment of average stock-return variance over the
remaining life of the option, E*(V, | 1), under the assumption that
the HW model is valid.

We test whether the forecast error constructed from V, and the
implied variance is orthogonal to past information, using in-sample
and out-of-sample tests. This orthogonality condition is based on a
joint hypothesis: (a) option markets are informationally efficient, so

! While this linearity has formally been expressed in terms of the standard deviation, our analysis is
conducted in terms of the variance. Simulations reported in Section 1.3 show that the linearity
applies to the variance as well, for our data. Feinstein (1989) analyzes implied volatilities and
confirms the linearity documented by Cox and Rubinstein.
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observed option prices contain all relevant, available information;
and (b) the HW pricing model is correct, so the implied variances
are valid estimates of the subjective variance of the market.

The test design is analogous to tests in the international finance
literature that examine the hypothesis that forward exchange rates
are optimal predictors of future spot exchange rates [e.g., Hansen and
Hodrick (1980)]. If the foreign exchange market is informationally
efficient, then the difference between the realized future spot rate
and the market’s subjective expectation of that rate is orthogonal to
obtainable information. As with our approach, an economic model
must be used to link the market’s expectation to observable variables
(i.e., market prices). Given this link, the forecast error can be mea-
sured and regressed on past information available to traders. The
primary difference between the exchange rate tests and our own is
that we exploit option price data to focus on the variance, not the
mean, of the underlying asset.

1.2 Characterization of stochastic volatility

Tests of the orthogonality restrictions will lack power unless infor-
mation available to the market can be used to predict return volatility.
We show in this subsection that the returns in our sample are accu-
rately characterized by the GARCH process, a parametric model of
persistence in conditional variance. As such, the model links return
volatility to the past behavior of the return process itself, which is
included in I, Under the null hypothesis, GARCH momentum will
be fully used by options traders in forming expectations of variance;
thus, the GARCH model will have no marginal predictive power over
the implied variance.

Consider the following GARCH (1, 1) model for stock returns:

v, =7+ ¢, 4)
€| €y, €z ...~ N, b), 5)
b=C+ aé_, + Bb,., + ¥{_y, 6)

where 7, is the return over day ¢, 7, C, o, 8, and v are parameters, and
{,_, is a vector of exogenous variables. In this section, we constrain
¥ to be zero, so (6) is the conventional GARCH specification. It is
easily verified that if « + 8 = 1 there is no mean reversion in the
variance. In this case, the conditional variance is integrated, and
unconditional variance is undefined. Persistence of shocks to variance
increases rapidly as this sum approaches unity from below. The return
process is stationary if « + 8 < 1.

The GARCH model is a discrete-time approximation to the diffusion
process in Equations (1) and (2) and is therefore consistent with the
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HW model. We can think of the actual stock price and its variance as
being generated in continuous time by (1) and (2), but with the data
observed discretely (daily). It is evident that (4) is the discrete-time
analog to (1), where 7approximates the drift ¢. To see how (6) maps
into (2) (assuming vy = 0), subtract b,_, from both sides of (6) to
obtain

b — b_, = [C/bp~1 - Q-a- B)]bt—l + ab,_, (0, — 1), 6)

where we have used the identity ¢ = 5,6?, and 6 is an i.i.d. standard-
ized normal random variable. Nelson (1990) has shown that as the
time interval goes to zero this expression approaches the diffusion
in (2), where C/b,_, — (1 — a — ) approaches u dt and « approaches
£V dt/2. This approximation is not unique, but it is consistent with
our use of the GARCH model in the subsequent analysis.

It is not intuitive that the continuous-time limit of the GARCH
process has two sources of randomness [dw and dz in (2)], whereas
the discrete-time process appears to have a single source of random-
ness [e is the only stochastic term in (4) to (6)]. The intuition for this
is as follows. By definition, the conditional variance of next period’s
residual is not stochastic in the GARCH framework. However, the
(conditional) forecast of the variance over the next two periods
depends on the realization of ¢,,, and hence is random. Now, as the
interval between time periods shrinks to its limit, the ability to dis-
tinguish between time £+ 1 and time ¢is lost, which yields the second
source of randomness in the limiting case.

The GARCH model is estimated for a sample of daily returns for
10 individual stocks over the period April 19, 1982, to March 30, 1984
(496 trading days), except for company 10, the sample for which
begins June 30, 1982. The sample is chosen to conform to our tests
of the orthogonality restrictions, as discussed in the following section.
The return data come from the CRSP tapes; daily returns are thus
calculated as the rate of change of the last transaction price of the
day.

Estimates from the GARCH model are reported in Table 1, for each
of the 10 companies, as model 2. Ticker symbols are provided in
Table 1, and we use these in reference to particular companies. Max-
imum likelihood estimation of the GARCH model is carried out by
using a variant of the Berndt, Hall, Hall, and Hausman optimization
algorithm that constrains parameter estimates in the variance equa-
tions to be nonnegative [Biegler and Cuthrell (1985)]. First derivatives
are calculated numerically.?

? We tested all 10 companies for the presence of an AR(1) process in returns, allowing for GARCH
residuals. All 10 had positive first-order serial correlation, but this was significant at the 10 percent
level for only one company (number 10). The magnitude of this serial correlation is trivial: the
largest first-order serial correlation coefficient (company 10) is .13; the median is .06.
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The evidence in Table 1 shows that the GARCH model provides a
good fit for the 10 stocks in the sample. In all cases but one, the
GARCH parameters are statistically different from zero at small sig-
nificance levels, according to the asymptotic #statistics. For DEC
(panel B), a is significant at a 10 percent level. For most of the stocks,
the sum o + 8 exceeds 9.

1.3 Characterization of bias

The interpretation of our tests relies on equating the variance implied
from the data and the Black-Scholes model with the market’s sub-
jective variance of returns over the remaining life of the option. How-
ever, there are potentially important ways in which the implied vari-
ance can be expected to differ from the subjective variance, even
assuming the HW model is valid and markets are efficient. In this
subsection, we attempt to quantify this bias in order to determine if
it affects our inferences.

The implied variance may deviate from the subjective variance as
a result of measurement error in the option price and nonsynchronous
stock and option prices. However, because of our careful choice and
handling of the data, as discussed in Section 2.1, the bias from this
source is likely to be trivial and will not influence our results.

Two other sources of bias, however, are potentially more serious.
First, as noted, the virtual linearity of the Black-Scholes formula for
at-the-money options means that the implied variance will only be
an approximation of the true subjective variance. Without further
analysis, however, it is not clear how good the approximation will
be. Hull and White (1987), for example, indicate that large values
for the standard deviation of the variance process can lead to large
biases in implied variances even for at-the-money options. Second,
the stock return distribution may be skewed, implying a nonzero p
and additional bias. In order to understand the importance, in our
data, of the linearity approximation and the assumption that p = 0,
we perform a Monte Carlo simulation of the continuous-time process
for returns in (1) and (2). The simulation allows p to be nonzero.
The magnitude of the bias from these two sources is measured by
comparing the implied variance from the simulated data with the
actual variance inherent in this data.

We calibrate the simulation to be consistent with the market data
used in this study. Because the GARCH model approximates the
diffusion process, the parameters in (1) and (2) are constructed from
the GARCH estimates in Table 1. For example, £ = \/2a, dt is taken
to be 1, and «a is estimated directly from the GARCH model. Sample
values for p are obtained by estimating the sample correlation between
r,and b, the fitted value from the GARCH equation (6).
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Table 1

Specifications of conditional variance

7 C a 8 ¥
Model £ (t-stat.) (¢-stat.) (t-stat.) (t-stat.) (t-stat.)
A: Computer Sciences Corp. (CSC) (20536310)
1 —2281.8 0.648 590.52
(0.56) (18.98)
2 —2270.3 0.385 238.15 0.110 0.484
(0.33) (1.99) (2.04) (2.10)
3 —2275.0 0.000 262.62 0.576
(0.00) (3.53) (3.79)
4 —2264.9 —0.034 58.85 0.058 0.612 0.237
(—0.03) (1.02) (1.76) (2.82) (1.60)
B: Digital Equipment Corp. (DEC) (25384910)
1 —2292.0 0.484 614.71
(0.42) (38.71)
2 —2280.2 0.011 413.79 0.094 0.228
(0.01) (2.44) (1.77) (0.74)
3 —2292.1 0.489 613.55 0.000
(0.42) (9.80) (0.00)
4 —2280.2 0.008 404.80 0.095 0.230 0.157
(0.01) (2.45) (1.76) (0.70) (0.85)
C: Datapoint (DPT) (23810020)
1 —2511.9 0.910 492.31
(0.52) (9.68)
2 —2482.0 1.338 11.56 0.020 0.969
(0.88) (2.06) (5.00) (138.43)
3 —2485.6 0.583 0.00 1.629
(0.59) (0.00) (9.70)
4 —2475.2 0.562 31.37 0.081 0.373 0.843
(0.34) (0.39) (2.89) (1.34) (1.86)
D: Federal Express (FDX) (31330910)
1 —2259.2 0.678 538.12
(0.65) (20.00)
2 —2245.3 0474 40.18 0.056 0.869
(0.46) (1.84) (2.67) (15.52)
3 —2251.9 0.301 0.0 1.348
(0.29) (0.00) (3.62)
4 —2243.7 0.298 0.00 0.057 0.791 0.204
(0.28) (0.00) (2.36) (8.15) (1.46)
E: National Semiconductor (NSM) (63764010)
1 —2464.3 1.855 1230.98
(1.14) (18.40)
2 —2450.7 1.972 55.20 0.052 0.904
(1.26) (1.73) (2.60) (24.43)
3 —2451.8 1.489 0.00 1.768
(0.95) (0.00) (3.94)
4 —2445.8 1.274 0.00 0.050 0.678 0.480
(0.83) (0.00) (1.32) (2.63) (1.01)
F: Paradyne (PDN) (69911310)
1 —2492.8 -0.359 1443.24
(-0.21) (29.08)
2 —2476.5 1.599 188.51 0.089 0.783
(0.97) (3.08) (3.56) (12.63)
3 —2482.3 0.616 321.59 1.402
(0.35) (2.60) (7.01)
4 —2477.4 0.625 230.78 0.000 0.194 1.166
(0.34) (1.96) (0.00) (0.85) (3.28)
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Table 1
Continued
r C a ¥
Model &L (#-stat.) (#stat.) (tstat.) (¢-stat.) (t-stat.)
G: Rockwell (ROK) (77434710)
1 —2181.0 1.558 392.10
(1.73) (20.84)
2 -2171.7 1.590 31.86 0.048 0.871
(1.73) (1.33) (2.00) (11.02)
3 —-2175.5 1.558 161.21 1.011
(1.77) (2.71) (3.74)
4 —2167.9 1.427 25.98 0.043 0.742 0.253
(1.59) (0.94) (0.12) (3.80) (1.28)
H: Storage Technologies (STK) (86211110)
1 —2443.6 —-1.328 1134.58
(~0.85) (23.09)
2 —2423.7 —1.548 96.26 0.079 0.836
(—1.09) (3.06) (3.76) (19.90)
3 —2428.2 —2.015 0.000 1.505
(—1.34) (0.00) (5.57)
4 —~2421.1 —1.762 0.00 0.093 0.573 0.513
(=1.19) (0.00) (2.16) (3.54) (2.01)
I: Tandy Corp. (TAN) (87538210)
1 —2337.2 0.362 738.35
(0.30) (19.11)
2 ~2311.3 —0.548 49.97 0.112 0.819
(—0.49) (2.38) (3.50) (16.06)
3 —2325.4 —0.248 0.00 1.350
(=0.21) (0.00) (4.35)
4 —2307.9 —0.66 0.00 0.128 0.656 0.287
(~0.59) (0.00) (2.72) (4.72) (1.39)
J: Toys R US (TOY) (89233510)
1 —1980.2 2.082 680.39
(1.63) (20.64)
2 —1962.2 2.086 8.14 0.040 0.946
(1.80) (1.48) (3.64) (59.12)
3 —1968.6 1.674 0.00 1.311
(1.35) (0.00) (5.06)
4 -1961.9 -1.615 0.00 0.102 0.381 0.682
(1.28) (0.00) (1.57) (1.22) (1.80)

Model: r,= 7 + ¢,

1. ¢ ~ N(O, ©)

2. ¢~ N(O, b)

h=CH+ ae ,+ Bh_,

3. ¢, ~ N(O, b)

b=C+ x5,

4. ¢, ~ N(O, b)

b=C+ae ,+ 8b_, + v,

¢, represents the daily implied variance from minimizing the sum-of-squared errors from all option
midpoint quotes on day ¢, for the nearest to-the-money option, intermediate term to expiration.
All returns are daily percentages times 1000. ¢-stat. represents the asymptotic Student’s ¢ statistic.
This may be biased as a result of the departure from normality of b7 *. & represents the value of
the log-likelihood function at its optimum for each model. All models are estimated using daily
data from April 19, 1982 through March 30, 1984; except TOY, which starts June 30, 1982 (423
days).
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Given these parameter values, which are grounded in the data, the
simulation proceeds as follows for each company in the sample. Risk-
neutral pricing and (1) and (2) are assumed to be true. Also, the
sample value of p is assumed to be true, as are the (time-dependent)
values of u and (time-independent) values of ¢ obtained from the
GARCH estimates. Finally, ¢ is assumed to be the average daily return
on the riskless asset and takes the value 0.000245. Given these param-
eter values, the stock-return process is simulated 1000 times over the
life of the option according to (1) and (2), where we approximate
the continuous-time process by dividing the 135-day remaining life
of the option into discrete, daily increments.? This experiment yields
an estimate of the actual price for the (European) call option. Under
risk-neutral valuation, this estimate is computed as the mean of the
discounted terminal value of the option over the 1000 trials. The
method described in Section 2 is then used to impute a variance from
the simulated price and the initial value of the stock price, where
stock and strike prices are chosen to be at-the-money. The simulations
also define the actual mean cumulative variance over the option’s
remaining life, E(V;, | 7). Under the null hypothesis, this conditional
mean equals the subjective variance. Bias is then defined as the dif-
ference between the simulated actual mean cumulative variance and
the implied variance from the model.

If there were no computational limits to the simulation, there would
be no reason to generate only 1000 replications of the process. In
the limit as the number of realizations approaches infinity, the empir-
ical distribution of V approaches its true distribution. However, given
practical constraints, it is impossible to determine how many finite
simulations are required to obtain a good estimate of the true distri-
bution. Our strategy is to use 1000 simulations to compute the option
price and E(V, | 1), and to repeat this procedure 100 times. With 100
realizations of the option price (and thus the implied variance) we
are able to construct a confidence interval around mean bias, which
quantifies the numerical bias in the experiment.

As a check on the possible numerical bias from using only 1000
draws, the foregoing procedure is modified so that 10,000 draws of
the stock and variance evolution are made (the 10,000-draw simu-
lation is conducted independently from the 1000-draw simulation).

The antithetic variate technique of using each pair of draws four times, discussed in Hull and White
(1987), is used in this regard. Equations (11) of that article (see notes to our Table 2), with normally
distributed random variates, form the basis for the simulation.

In effect, the simulation experiment utilizes 100,000 simulations (1000 realizations, 100 times) to
construct estimates of bias. The comparable alternative strategy—100,000 realizations with no
repetitions—yields only one estimate of option price, so no confidence interval can be constructed.
Though 100,000 simulations may be sufficient to ensure a precise estimate of the true option price
and the distribution of 7, there is no way to determine this from the alternative strategy.
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Here 1,000,000 draws are taken for each stock. The effect of the size
of the simulation is seen by comparing the results as we go from 1000
to 10,000 draws.

The results from the Monte Carlo experiments are contained in
Table 2. Sample means and standard errors are reported over the 100
repetitions of the simulated mean cumulative variance E(V, | 1), the
implied variance, and inherent bias. These values are computed and
reported for three values of initial variance {V(0)]. The middle value
of V(0) is the unconditional variance, C, taken from Table 1, speci-
fication 1. Simulations using 10,000 draws are only conducted for the
middle value of V(0) and are reported last for each company in the
table.

The results show that mean bias inherent in the analytic approxi-
mation using the option pricing model is never more than 1.3 percent
of the actual variance. The variance nested in the Monte Carlo analysis
appears to be trivial because standard errors of the bias are also small:
two-standard-error confidence intervals around the mean bias never
include 3 percent in absolute value. When 10,000 trials are repeated,
the two-standard-error bounds are always less than 1.5 percent in
absolute value. Note also that the mean implied volatility from the
10,000-draw simulations is always within two numerical standard errors
of the 1000-draw simulation.

From the simulation results obtained by Hull and White (1987),
we might expect large bias for cases in which a is large. For example,
they show that for £ = 3 on an annual basis, which approximately
corresponds to o = .11 (as for CSC and TAN in our data), the bias of
the implied variance is 20 percent. However, their result holds for p
= 0; that is, the variance process follows a random walk. Our findings
of low bias are likely due to mean reversion in the estimated discrete-
time variance process. Also, for companies like DPT and TOY that
have strong persistence in variance, estimated a values are relatively
small.

As a sensitivity check, the experiments for several companies were
repeated with much higher values of p in absolute value. For instance,
FDX with V(0) of 538.12 and p of —.8 generates a mean bias of 0.59
percent (two-standard-error confidence interval: [—.69, 1.86]); when
p is set to .8, the mean bias becomes —1.28 percent (two-standard-
error confidence interval: [—2.78, 0.22]). This result is representative
of those for all 10 stocks. We conclude that under the HW model
with risk-neutral probabilities, our variance extraction procedure
appears to be insensitive to the nonlinearity assumption and skewness
in the context of our data. We will refer to these results to ascertain
the potential effects of the inherent bias on inferences from the fore-
cast-based tests of the orthogonality restrictions.
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Table 2
Bias inherent in analytic approximation
Simulated Implied
variance variance
Draws v(0) (std. err.) (std. err.)

Bias (%)
(2 std. err. range)

A: CSC, p =0.2962

1000 438.56 589.49 593.86
(0.01) (4.12)
1000 590.52 591.02 596.54
(0.01) (4.14)
1000 750.52 592.84 599.52
(0.01) (4.17)
10,000 590.52 591.04 592.50
(0.004) (1.26)
B: DEC, p = —0.1872
1000 354.71 614.06 617.19
(0.01) (4.29)
1000 614.71 614.42 619.43
(0.01) (4.14)
1000 834.71 615.36 621.98
(0.01) (4.17)
10,000 614.71 614.39 614.98
(0.003) (1.30)
C: DPT, p = —0.1059
1000 332.31 681.07 679.87
(0.03) (4.81)
1000 492.31 763.05 762.97
(0.03) (5.49)
1000 642.31 840.19 841.14
(0.04) (6.13)
10,000 492.31 763.09 757.56
(0.01) (1.66)
D: FDX, p = 0.0493
1000 378.12 522.16 524.68
(0.02) (3.59)
1000 538.12 536.66 540.46
(0.03) (3.72)
1000 798.12 560.59 566.48
(0.03) (3.91)
10,000 538.12 536.67 536.79
(0.01) (1.12)
E: NSM, p = 0.2085
1000 880.98 1196.00 1205.98
(0.10) (9.58)
1000 1230.98 1251.91 1265.30
(0.11) (10.12)
1000 1580.98 1308.22 1325.03
0.11) (10.67)
10,000 1230.98 1252.03 1254.77
(0.03) (3.10)
F: PDN, p = —0.0408
1000 1043.24 1457.01 1465.23
(0.09) (11.58)
1000 1443.24 1476.86 1488.33
(0.09) (10.20)
1000 1843.24 1497.19 1511.89
(0.09) (12.05)

—0.74
(—2.14, 0.66)
—0.93
(—2.33,047)
-113
(—2.53,0.28)
~0.25
(—0.67,0.18)

—0.51
(0.89, —1.91)
-0.81
(—2.15,0.53)
-1.07
(—2.43,0.27)
-0.10
(—0.52, 0.33)

0.18
(—1.24, 1.59)
0.01
(—1.43, 1.45)
-0.11
(—1.57,1.35)
0.72
(0.29, 1.16)

—0.48
(~1.86, 0.89)
-0.71
(—2.10, 0.68)
—-1.05
(—2.44, 0.34)
-0.02
(—0.44, 0.39)

—0.83
(—2.44, 0.76)
—1.07
(—2.69, 0.55)
—1.28
(—2.92,0.35)
—~0.20
(—0.70, 0.28)

—-0.56
(-2.15,1.02)
~0.78
(—2.16, 0.60)
—0.98
(=259, 0.63)
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Table 2
Continued
Simulated Implied
variance variance Bias (%)
Draws w(0) (std. err.) (std. err.) (2 std. err. range)
10,000 1443.24 1476.97 1475.35 0.11
(0.03) (3.64) (—0.40, 0.60)
G: ROK, p = 0.0360
1000 262.10 382.81 384.55 ~0.45
(0.01) (2.54) (—1.78, 0.87)
1000 392.10 393.62 396.39 —0.70
(0.01) (2.63) (—2.04, 0.63)
1000 522,10 404.61 408.40 —0.94
(0.01) (2.72) (—2.28,0.41)
10,000 392.10 393.60 393.83 —0.06
(0.005) 0.79) (—0.46, 0.34)
H: STK, p = —0.2735
1000 884.58 1115.95 1114.47 0.13
(0.09) (8.19) (—1.34, 1.60)
1000 1134.58 1135.74 1136.07 —0.03
(0.09) (8.38) (—1.50, 1.45)
1000 1484.58 1163.81 1166.63 —0.24
(0.09) (8.64) (—1.73, 1.24)
10,000 1134.58 1135.84 1127.21 0.76
(0.03) (2.56) (0.31, 1.21)
I: TAN, p = —0.0563
1000 518.35 707.59 704.63 0.42
(0.16) (4.82) (-0.94, 1.78)
1000 738.35 729.40 727.98 0.19
0.17) (5.01) (—1.18, 1.57)
1000 1008.35 756.52 756.91 —0.05
(0.18) (5.23) (—1.43,1.33)
10,000 738.35 729.59 722.75 0.94
(0.06) (1.53) (0.005, 1.36)
J: TOY, p = 0.1518
1000 530.39 558.84 559.12 —0.05
(0.09) (3.99 (—1.48, 1.38)
1000 680.39 625.41 626.52 —0.18
(0.10) (4.53) (—1.63,1.27)
1000 880.39 714.29 716.49 -0.31
(0.13) (5.26) (—1.78, 1.16)
10,000 680.39 625.34 622.22 0.50
(0.03) (1.38) (0.06, 0.94)
Model: dS = ¢S dt + \/V'S dw, 1
dv=uVdt+tVdz 2)

S is the stock price. The Brownian motions dw and dz have an instantaneous correlation of p.
Following Hull and White (1987), risk-neutral option valuation is performed by simulating the
following two equations:

S, = S, exp[(r; — Vio,/DAL + uNV_ B, €Y
V,=V,_, exp[(u — £/2)At + putVAI+ VT = ok VB @)

The relevent time increment (A#) is taken to be one day. In all cases the option expires in 135
days. (1’) and (2’) are simulated 1000 times (draws), using the four-way control variate technique
described in Hull and White (1987). [The simulation is repeated using 10,000 simulations, 100
times for the middle value of V(0). The results from this experiment are reported for each com-
pany—using the middle value of V(0)—below the first horizontal line.} This provides a single
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Tests of the Orthogonality Restriction

2.1 Tests and data

We test the orthogonality restrictions in two basic ways. The first set
of tests, in Section 2.2, analyzes the marginal predictive power of the
past behavior of the return process, given the implied variance, using
in-sample regressions and classical statistical tests. Section 2.3 con-
tains results from out-of-sample tests of forecastability. We investigate
the ability of implied variance to predict actual volatility out-of-sam-
ple to models using past information by comparing root mean square
errors and by estimating encompassing regressions.

The implied variances used in this study are constructed from option
and contemporaneous stock-price data for 10 individual stocks with
publicly traded options on the Chicago Board Options Exchange
(CBOE) for the period April 19, 1982, through March 31, 1984. On
the floor of the CBOE there are multiple competing market makers
for each of these options. A clerk records every time one of the market
makers quotes a bid price that is higher than the bids of the other
market makers. Similarly, the clerk records all ask quotes that are
lower than extant asks. Both the bid and ask quotes at such points
are posted—time-stamped to the nearest second—along with the
most recent stock price to have crossed the ticker. We refer to the
highest bid and lowest ask quotes as the inside spread. The best bid
and best ask quotes are not necessarily from the same market maker.
Our data, taken from the Berkeley options database, consist of every
inside spread during each day in our sample. Each option inside
spread is paired with the most recent stock price from the ticker,
recorded by the clerk.

The sample of data and extraction techniques used in this study
are chosen to avoid as much as possible errors in the measurement
of the implied variance. The stocks in our sample paid no cash div-
idends from 1981 through 1985, therefore, the options are essentially
European. The sample period has no special significance. It starts
nine years following the inception of public trading in listed options,
so market makers should be adroit at their job. It also allows isolation
of non-dividend-paying stocks and is a relatively calm period (com-

(market) option price (and market cumulative variance forecast) from which an implied volatility
is computed analytically, following Black-Scholes. This will be exactly correct in those cases where
Black-Scholes is exactly linear in Vand where p = 0. This simulation to obtain an implied volatility
is repeated 100 times to provide the mean and standard errors of the inherent bias (the source of
variation is numeric, not sampling error). # and » are independent normal (0, 1) random deviates.
5(0) = Xe~"", r,= 0.000245. The values of u and £ are derived from the GARCH (1, 1) estimates of
the variance equation for each company (see Table 1), following Nelson (1990). The value of p is
computed as the sample correlation between the GARCH (1, 1) conditional variance on day ¢
(given information up to day #-1) and the return on day ¢ All variances are daily times 1 million.
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pared to, say, late 1987), so the ticker should report up-to-the-minute
stock transaction prices.

Note that we are not using transaction prices from the options
market. At any point in time when the market is open, the option
price is assumed to be the midpoint of the inside bid-ask spread.
Although actual transaction prices may include price pressure effects,
and (latest) transaction prices from both markets at a fixed point in
time (such as closing) will always be asynchronous, our data suffer
from neither of these problems.

However, the daily return series may embody noise due to the bid-
ask spread “bounce.” The subset of stocks with listed options in 1982
consisted of actively traded and generally large stocks in terms of
market value of equity. For these stocks, relative spreads tend to be
small, and the observed price process should be an excellent instru-
mental variable for the latent “true” price. By the same token, the
most recent stock price matched to the option from the Berkeley
tapes may contain some noise. Again, to the extent that this noise is
well-behaved, the procedure used to imply a single variance from the
entire day’s data should serve to trivialize the errors-in-variables prob-
lem.

Only those options that were closest to being at-the-money are
used. Furthermore, of the three expiration dates available for most
companies and most days, the intermediate-term option is used
throughout the analysis. The number of quotes in a day varies sig-
nificantly across the sample, but the average number of quotes per
day per company is about 50 for the at-the-money, intermediate-term
call option.

We construct time series of implied variances for each stock in the
sample as follows. On each day, at-the-money options are isolated by
choosing those options with the closest discounted (at the risk-free
rate) strike price to stock price at option market close. Of these, for
those options that expire at the intermediate term, a single daily
implied variance is computed by minimizing over variance the sum
of squared errors from actual midpoint quotes to the Black-Scholes
model value at that variance.’ The model value is taken to be a func-
tion of the yield on the U.S. Treasury bill maturing as closely as
possible to the intermediate-term expiration date and the most recent
transaction price of the stock from the NYSE, which is the simulta-
neous stock price reported on the Berkeley tape.® As noted, there are

s A quadratic hill-climbing algorithm is used that has good convergence properties. This technique
was suggested by Whaley (1982) and is more efficient than that used by Brenner and Galai (1987),
namely, implying a variance from each option and using the daily average.

o We collected daily Treasury-bill yields from the Wall Street Journal. Fot options that mature in six
months or less, there is always a one-day difference in the maturity date of the Treasury bill and
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on average 50 quote pairs used to define a single implied variance
per day. Options quote midpoints and the corresponding stock prices
that violate the Black-Scholes lower boundary condition are dis-
carded. Otherwise, all qualifying options within the day are treated
equally. This procedure assumes that the variance is constant within
a day.

2.2 Regression-based tests

In this subsection we test the orthogonality restrictions by examining
the significance of the GARCH coefficients (a and 8) in the condi-
tional variance specification after accounting for option market fore-
casts of volatility. Hence, we define {,_, in (6) to be the implied
variance given information at time ¢ — 1, and we allow v to be a free
parameter. From the discussion in Section 1.2, the conditional vari-
ance b, corresponds to the instantaneous variance of the diffusion, V..
If the life of the option T'is one day, then V, and V, are identical for
the discrete-time approximation. The general conditional variance
equation in (6) then can be interpreted as a regression of ¥, on the
subjective variance, as measured by the implied variance, and past
information. The orthogonality restriction of the joint hypothesis
implies that the GARCH coefficients in (6) are zero (i.e., that the
GARCH variables have no marginal predictive power).

This test is subject to an obvious and important criticism. Whereas
b, is the conditional variance of daily returns, in this study §,_, is the
implied variance from an option that matures at a horizon greater
than a day (between 64 and 129 trading days). Under the HW model,
the implied variance represents the market’'s prediction of average
daily volatility over the remaining life of the option. Thus, given this
specification, {, is not an exact predictor of the dependent variable
b, Day and Lewis (1992) use weekly return horizons with index
options that mature in a month and are therefore subject to the same
criticism. We conduct these tests as a preliminary characterization of
the orthogonality restrictions and account for this maturity mismatch
problem with out-of-sample tests in Section 2.2 below.

The results of the in-sample, regression-based tests are shown in
Table 1. The table contains the estimation results for the unrestricted
model in (4) to (6) (specification 4) and three restricted specifica-
tions. Specification 1 is a homoskedastic mode} where the restriction

the option expiration date. Since 12-month bills are only auctioned every four weeks, there is
sometimes an eight-day difference between the maturity of the applicable Treasury bill and the
expiration of the option. There are three days in the sample period where the Treasury-bill market
was closed, but the NYSE and CBOE were open. In these cases, the previous day’s rate data were
substituted. The Berkeley database is missing data for the dates July 1, 1983, and December 23,
1983. For these dates, we use the options data from the previous day to replace the missing values.
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a =3 =+ =0 is imposed. Specification 2 is standard GARCH(1, 1)
where v is restricted to equal 0 (and is discussed in Section 1.2).
Specification 3 restricts the conditional heteroskedasticity to be entirely
manifest in the option market’s variance forecast. A likelihood ratio
test (LRT) on the restrictions imposed on specification 2 by specifi-
cation 1 suggests that the null hypothesis of no GARCH (& = 8 = 0)
can be rejected at the 1 percent level for all 10 companies, assuming
conditional normality, which confirms the inferences in Section 1.2.
As discussed there, nontrivial variance clustering is an important char-
acteristic of most of the companies.

From specification 3, we can reject the null that { has no explanatory
power for actual daily variance for all companies except DEC, even
given the maturity mismatch problem. In all other cases, this coeffi-
cient is significant and positive. The coefficient on { exceeds unity in
eight cases.

The joint null hypothesis of informational efficiency and the HW
model can be tested against the alternative that allows GARCH terms
to have incremental predictive ability by comparing specifications 3
and 4. Using the LRT, we reject the null hypothesis at standard sig-
nificance levels for 7 of the 10 companies: CSC, FDX, NSM, ROK,
STK, TAN, and TOY.” Statistical inference for the remaining three
companies is hindered by the fact that the nonnegativity constraints
imposed in estimation are binding in the variance equation.?

Despite different sample periods, assets, horizons, and so forth,
these results are consistent with those of Day and Lewis (1992)—
past information improves the market forecast of volatility. However,
this result must be interpreted with caution since the maturity mis-
match problem may bias the test against the implied variance. In the
next subsection we make adjustments for this problem in the context
of out-of-sample forecast comparisons.

2.3 Out-of-sample tests

The incompatibility of forecast horizons that arises in the regression-
based tests is eliminated in this subsection by transforming GARCH
forecasts of daily variance to forecasts of average daily variance over
the remaining life of the corresponding option. On any day ¢ in the
sample (¢ = 1,..,495), we can construct a forecast of b, by using the
fitted value of Equation (6) with vy equal to zero. By recursive sub-
stitution of this GARCH equation, the forecast for b,,, can be con-

"The LRT is more appropriate that Wald tests given the potential collinearity between
€1, by, and §_,.

* These constraints bind in some other cases (e.g., FDX), but here the constraint is binding in both
specifications 3 and 4.

311

ZT0Z ‘2T JequisnoN U0 euoZ LY J0 A1SIeAIUN T2 /610°S[eunolploXo's//:dny wolj papeoumod


http://rfs.oxfordjournals.org/

The Review of Financial Studies /v 6 n 2 1993

structed for any & > 0, given information at ¢ To obtain a GARCH
forecast that is directly comparable to our interpretation of the implied
variances, we construct the GARCH forecasts for b1, bryz, . .+, Ban
where N is the number of days left in the life of the intermediate-
term option on day ¢ Denote the mean over these N forecasts by G..
The forecast horizons for G, and the implied variance are identical
by construction. The joint null hypotheses imply that G, is not a better
predictor of N-step ahead realized return volatility than the implied
variance; that is, the orthogonality restriction means that G, cannot
be used to improve the forecast in the implied variance. In this sub-
section, we compare the forecast performance of implied variance
with the GARCH forecast G and a naive forecasting model.

To ensure that forecast comparisons are not biased in favor of the
time-series model, we are careful to construct the GARCH forecasts
by using information available to traders at the time the forecasts are
made. Thus, forecast comparisons are made out-of-sample. We esti-
mate both rolling and updating GARCH models. The rolling structure
uses a constant sample size of 300 observations, adding the return
on day ¢ — 1 and deleting the return on day ¢ — 301 from the sample
used to estimate GARCH on each day ¢ The updating procedure
simply adds information as time progresses to construct an updated
forecast. Because the GARCH model is estimated only from stock-
return data (and is therefore not tied down to the options sample),
the first sample begins 301 trading days before April 19, 1982, the
first day of our implied variance sample. The GARCH model is rees-
timated 495 times, for each procedure, to construct out-of-sample
forecasts that are up-to-date. In addition to GARCH, we also consider
the updated sample variance of past returns as a naive forecast of
variance:

1<
HI:;ZG%’

=1
where €2 is the estimated residual from Equation (4), with @ = 8 =
v =0.

Forecasting performance is judged by comparing the ability of the
forecasts to predict the out-of-sample mean of the squared return
residuals from Equation (4) over the remaining life of the interme-
diate-term option. To be precise, assume that this option on day ¢ has
N days to maturity. Then the realized volatility over this period is
given by

1 &
Z, = z e%+i-
N3

Note that z, is constructed to be compatible with the interpretation
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of the implied variance and G,. Comparisons are based upon the out-
of-sample mean error

495

495 E (Zt t H

where x, is alternatively the implied variance at time ¢ the two GARCH
forecasts, and H,, mean absolute error

495

MAE=4—9—§E|Zt Xl

and root mean square error

495 S5
= 2
RMSE [495 E (z, - ,)] :

The results of this exercise are contained in Table 3. The implied
variance has the smallest RMSE for only two companies (DPT and
TOY). For the remaining companies, the GARCH and the naive fore-
casts have lower RMSE than the implied variance. Thus, for these
companies, using past information on the stock-return process can
improve the market’s forecast. The following points are also evident
from the table:

1. The updating GARCH outperforms rolling GARCH for all 10
companies under RMSE criterion.?

2. The updated sample variance has the lowest RMSE in 5 of 10
cases. This relative forecasting performance is at odds with the results
of Akgiray (1989). Akgiray finds that GARCH variance forecasts are
convincingly superior to historical variance as a forecast using the
RMSE criterion for stock index data. However, Akgiray uses a forecast
horizon of only 20 days. We replicated his analysis with a 100-day
horizon (representative of the average number of calendar days in
the horizon in this study) and found that the relative rankings of
historical variance and GARCH were overturned, which is consistent
with our results.

3. The ME for implied variance is positive for all companies, which
indicates that the implied variance is systematically lower than the
actual volatility in this period. This characteristic of the forecasting
performance of implied volatilities is readily visible in Figures 1 and
2. Here we plot the realized mean squared returns over the option’s
life, the updated sample variance, and the implied variance for two

In a study that examines the forecast efficiency of GARCH (in terms of expected utility), West et
al. (1990) find that rolling GARCH is superior to updating. The data in that paper are weekly
foreign exchange rates.
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Table 3
Comparisons of out-of-sample variance forecasts
Implied variance Updated G, Rolling G, H,
A: CSC
ME 33.48 —11.04 —12.14 —20.32
MAE 187.26 132.05 147.85 133.67
RMSE 232.15 150.61 169.84 150.32
B: DEC
ME 257.00 188.80 107.23 239.22
MAE 308.37 306.09 331.32 300.41
RMSE 392.84 375.86 389.23 300.72
C: DPT
ME 281.63 —829.87 —899.04 —327.47
MAE 402.04 905.79 1051.97 593.85
RMSE 541.84 1537.71 1719.35 670.95
D: FDX
ME 143.41 —2291 —4.89 —25.89
MAE 179.12 185.86 211.14 184.84
RMSE 241.21 213.12 233.74 212.61
E: NSM
ME 547.96 115.72 —5.66 141.25
MAE 557.17 367.14 447.95 381.81
RMSE 693.59 535.82 592.99 536.92
F: PDN
ME 644.95 372.79 136.16 386.43
MAE 689.63 571.96 674.26 584.19
RMSE 917.84 751.40 812.22 760.52
G: ROK
ME 177.74 —4.38 0.25 -12.99
MAE 203.28 94.51 115.09 99.67
RMSE 243.78 11491 135.86 114.93
H: STK
ME 434.22 115.36 59.76 —125.06
MAE 496.36 431.79 520.75 414.72
RMSE 635.48 538.00 616.10 513.18
I: TAN
ME 203.32 —50.24 —51.02 ~53.56
MAE 275.50 279.86 307.21 283.17
RMSE 389.52 350.04 393.33 343.31
J: TOY
ME 71.15 —79.78 -136.79 —60.62
MAE 241.51 266.82 275.33 256.89
RMSE 296.57 330.84 363.50 319.96

GARCH (&), historical (), and implied variance are each being used to forecast the mean of the
daily variance over the remaining life of the option. For each day in the sample, each forecast is
compared to the actual mean of the daily variance. In this table, only those options with days to
maturity of between 90 and 180 days are used. Only call options that are closest-to-the-money are
used. The realized variable is measured as the sample average of ¢ = (r, — 7)? over the remaining
life of the option, where 7 is the unconditional mean of the return process.

As defined in the text, ME refers to mean forecast error, MAE refers to mean absolute error, and
RMSE refers to root mean square error. Rolling GARCH forecasts use 300 days prior to the day from
which the forecast is being made. Updated GARCH adds an additional observation for each forecast.
All returns are daily percentages times 1000.

314

2T0Z ‘2T JAQUIBAON U0 BUOZ Y JO AMISIPAIUN e /B10°S[euIno[ploxo's//:dny woly pepeojumoq


http://rfs.oxfordjournals.org/

Forecasting Stock-Return Variance

1700 A

1600 4

1500 4

1400
(24

1300 4

Vo

1200 4 ° °

1100 4 & °

"
°

1000

000
°
>

900 -

v

g ° g& %;

i S o, 00 ° ° ° °
2 8009 o °

c

e *

o
° (4
® o ©
o o e 000 .20 & o &
400 S o & °3 o ¢ ° °
o 008 o o & & ° ° o %o
oo P ° 00 & %P o
o o8 ° R R
9,
00y Teg . PR S
° e o,
o % 8,
co g B ¥ o
00 o ©
200 4 - ® A
100 °
©
0 4
T T T T T T
o 100 200 300 400 500
TIME (APR 19, 1982 - March 31, 1984)
Figure 1

Daily variance measures for CSC (April 19, 1982 through March 31, 1984)

Two forecasts of the average stock-return variance over horizon ¢ + Nare compared with the actual
average variance over that horizon for each day in the sample period. We plot the updated sample
variance (using at least the past 300 daily returns) and the variance implied from simultaneous
stock price and option quotes over the day on the closest-to-the money call option that matures
in N (trading) days (64 < N < 129). Both measures can be thought of as predictors of the average
variance over the remaining life of the option. The actual variance of the stock return (which was,
in fact, realized) over the forecast horizon is also plotted. The three variance measures plotted are
(CCC) the updated sample variance; (O O) the implied variance; and (***) the actual variance
over the forecast horizon. If the joint null hypothesis of the paper were true, then the implied
variance would be an unbiased predictor of the actual realized variance, and the historical sample
variance would be orthogonal to the prediction error.
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Figure 2

Daily variance measures for STK (April 19, 1982 through March 31, 1984)

Two forecasts of the average stock-return variance over the period ¢+ 1 through ¢+ Nare compared
with the actual average variance over that period. On day ¢ in the sample, we plot the updated
sample variance (using at least the past 300 daily returns) and the variance implied from simul-
taneous stock price and option quotes over the day on the closest-to-the money call option that
matures in N (trading) days (64 < N < 129). Both measures can be thought of as predictors of
the average variance over the remaining life of the option. The actual variance of the stock return
(which was, in fact, realized) over the forecast horizon is also plotted. The three variance measures
plotted are (CCC) the updated sample variance; (OO O) the implied variance; and (***) the
actual variance over the forecast horizon. If the joint null hypothesis of the paper were true, then
the implied variance would be an unbiased predictor of the actual realized variance, and the
historical sample variance would be orthogonal to the prediction error.
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representative companies, CSC (with relatively low persistence in
variance) and STK (with relatively high persistence).

As noted by Fair and Shiller (1990, pp. 375-376), simply comparing
out-of-sample forecasts using RMSE has limitations. Further insights
into the nature of the different forecast models can be obtained by
regressing the realized mean squared residuals on the three alter-
native out-of-sample forecasts:

z, =B, + B:.§, + B,G, + B,H, + u, @)

All variables are as defined before, except note that G, is the updated
GARCH forecast, conditional on information available at time ¢, of
the mean variance; rolling GARCH is not used here because updating
GARCH dominates it under RMSE, and these two are highly corre-
lated.

This regression is in the spirit of the encompassing literature [Hen-
dry and Richard (1982))]. If a forecast contains no useful information
regarding the evolution of the dependent variable, we would expect
the coefficient on that forecast to be insignificantly different from zero.
The orthogonality restriction implies that the alternative time-series
models contain no information not incorporated in the implied vari-
ance that can be used to predict realized volatility. Thus, the encom-
passing regressions are closely related to the in-sample regression
tests. However, this design avoids the maturity mismatch problem,
and the forecasts are conditioned on information available at period
t. As pointed out by Fair and Shiller (1990), this test also avoids the
inherent ambiguity of RMSE comparisons.'°

Ordinary least squares (OLS) is a consistent estimator of these
regression coeflicients. However, because the forecast horizon exceeds
the frequency of the available data, the error term will be a moving
average process. Since generalized least squares is inconsistent (as
the forecast errors are not strictly exogenous), we take the approach
of obtaining a consistent estimator of the variance covariance matrix
of the OLS estimators by generalized method of moments (GMM).
An early example of this procedure is Hansen and Hodrick (1980).

To construct this consistent estimator, we use the Bartlett kernel
approximation to the spectral density at frequency 0 of the residuals
to weight lagged values as suggested by Newey and West (1987). As
noted by Andrews (1991), the asymptotic theory for this estimator

Fair and Shiller (1990) use this empirical strategy to infer the information content of alternative
models of real GNP growth. In particular, they examine the forecasting performance of a structural
model and various time-series models of aggregate output. Although the economic issue in our
article differs from Fair and Shiller, it is clear that the questions we ask are analogous to theirs.
Thus, their methods of inference are appropriate for our analysis.
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Table 4
Encompassing tests of variance forecasts
B, 8, 8. B8y r
(GMM o (GMM 9 (GMM 9 (GMM » M*
A: CSC
2014.269 0.276 ~2.580 0.357
(5.39) (3.81) (—4.32) 50
2950.717 0.272 0.522 —4.566 0.451
(4.72) (3.81) (0.98) (~3.47) 54
B: DEC
981.366 0.382 —1.012 0.222
(7.52) (1.60) (—3.96) 42
1069.920 0.361 —0.890 —0.327 0.227
(3.26) (1.16) (—2.49) (=0.30) 66
C: DPT
445.920 0.531 0.129 0.418
(3.18) (1.82) (2.92) 60
3692.963 0.970 0.093 —2.360 0.575
(2.64) (3.97) (2.12) (—249) 51
D: FDX
1585.291 1.116 —2.641 0.304
(3.38) (2.35) (=2.71) 75
3161.79 0.831 1.736 -6.938 0.508
(3.87) (2.99) (1.29) (=2.70) 85
E: NSM
2084.680 1.462 —1.659 0.387
(3.65) (4.28) (—2.80) 59
4955.058 0.490 0.366 —4.093 0.839
(9.73) (2.21) (157) (=7.17) 73
F: PDN
1997.741 0.118 -0.632 0.030
(2.96) (0.52) (=0.93) 184
2388.188 0.212 1.074 -2.175 0.086
(2.63) 0.79) (1.94) (—2.34) 196
G: ROK
1988.798 —0.452 —3.775 0.356
(6.69) (—0.48) (—5.02) 98
2141.949 —0.100 —1.556 —2.504 0.375
(4.81) (—1.24) (~0.80) (—1.02) 119
H: STK
2491.690 1.300 —2.166 0.402
(4.24) (3.01) (=3.27) 47
5073.759 0.619 —0.389 —3.792 0.637
(3.41) (2.28) (0.96) (—2.54) 86
I: TAN
1858.705 0.748 —-1.907 0.215
(4.24) (3.01) (=3.27) 47
5030.08 0.390 0.730 ~6.351 0.488
(3.41) (2.28) (0.96) (—2.54) 86
J: TOY
824.120 1.171 —-1.273 0.227
(4.23) (2.56) (—2.85) 59
4053.326 0.660 0.028 —5.999 0.555
(4.91) (2.57) (—0.02) (—4.32) 87
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requires that the lag length used to accumulate the variance go to
infinity with the sample size. Therefore, selection of lag length is not
obvious. We use the method of Andrews (1991) to estimate optimally
this lag length.t

Table 4 contains the results of the optimal forecast weighting tests.
Two regressions are reported. In the first, 8, is constrained to be 0,
and the second is the unrestricted model. In the table, we report the
automatic bandwidth obtained from the Andrews procedure, M*; the
t-statistics are computed by using M* in the Newey-West weighting
scheme. All tests were conducted with a bandwidth of 32, 66, and
132, as well. None of the following inferences are sensitive to the
choice of bandwidth.

In general, the optimal out-of-sample forecast of mean realized
volatility places a statistically significant positive weight on the implied
variance from the options market, no significant weight on the GARCH
forecast, and a large significant negative weight on the updated sam-
ple variance. DEC, PDN, and ROK are exceptions to this pattern. Only
DEC has a significantly negative coefficient on the GARCH forecast.
In all 10 cases the intercept is positive and statistically significant.
This result is consistent with earlier evidence that during this period
variance forecasts are biased downward.

These regression results suggest the importance of the point made
by Fair and Shiller (1990). RMSE comparisons suppress a large amount
of information about the problem of constructing an optimal forecast.
Despite having the lowest RMSE in only two cases, implied variance
has significant forecast weight in seven cases. Symmetrically, note
that in the two cases where implied variance had the lowest RMSE

Andrews (1991) has developed the asymptotic theory to estimate the optimal lag length or band-
width for a given sample of size T as a function of the autocovariance structure of the matrix V,
where V= ¢'X, eisa T x 1 vector of the OLS residuals, and X is the 7 x K matrix of regressors. In
our case, the first column is a vector of 1. We estimate a univariate AR(1) process for each column
of V. The K AR(1) coefficients and residual variances are then used to compute &(1) by using
Equation (6.4) in Andrews (1991, p. 835). We use weights of 1 for p=2,...,Kand 0 for p = 1 (which
Andrews notes yields a scale-invariant covariance matrix, page 834). Since we are using the triangular
(Bartlett) kernel estimator as in Newey and West (1987), we obtain the optimal bandwidth by
plugging &(1) into Andrews’ Equation (6.2) (page 834). The result of this equation is equal to M*
+ 1, where M* is the optimal bandwidth used to compute the variance-covariance matrix, as in
Newey and West. M* increases with the cubed root of 7.

—

B, is restricted to be 0 in the first model and a free parameter in the second. z, is the realized mean
(7, — 7)? during the period ¢ + 1 through ¢ + N, where ¢ + Nis the maturity date of the option. {,
is the implied variance from all quotes on the at-the-money, intermediate-term options (that expire
attime ¢t + N) on day . G, is N-step ahead (updated) GARCH (1, 1) variance forecast (conditional
on information available at time £). H, is the updated sample variance measured through day ¢ M*
is the optimal bandwidth used to estimate the Bartlett kernel in the Newey-West variance-covari-
ance matrix [following Andrews (1991)]. GMM ¢ refers to the Student’s t-statistic computed using
this matrix. All returns are daily percentages times 1000. All variances are on a daily basis.
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Table 5
Implied volatility forecast “errors” and the level of variance
60 ﬂl ’-2
Company (GMM 9 (GMM 9 M*

3601.40 —-5.77 0.26

csc (4.36) (—4.32) 24
905.16 —1.54 0.12

DEC (6.63) (—4.39) 38
3557.52 -2.16 0.28

DPT (2.35) (-2.18) 54
2869.53 —4.81 0.48

FDX (4.41) (—4.43) 75
4622.75 -3.73 0.82

NSM (10.62) (=9.61) 46
2381.30 -1.67 0.18

PDN (2.57) (=211 101
1721.33 —3.64 0.11

ROK (1.75) (—1.54) 47
5092.60 —4.47 0.62

STK (5.68) (—5.28) 77
4790.36 —5.74 0.48

TAN (5.45) (—5.37) 29
3987.13 ~6.13 0.51

TOY (5.56) (—5.64) 69

Model: z, — {, =8, + 8, H, + u,

z,1is the realized mean (r, — 72 during the period ¢ + 1 through ¢ + N, where ¢ + Nis the maturity
date of the option. ¢, is the implied variance from all quotes on the at-the-money, intermediate-
term options that expire at time ¢ + Non day ¢. H, is the updated sample variance measured through
day ¢. M* is the optimal bandwidth used to estimate the Barlett kernel in the Newey-West variance—
covariance matrix [following Andrews (1991)]. GMM ¢ refers to the Student’s #-statistic computed
using this matrix. All returns are daily percentages times 1000. All variances are on a daily basis.

(DPT and TOY), the historical variance has significant forecasting
power.

The results reported in this table suggest that the joint null hypoth-
esis of market efficiency and the HW model is rejected at standard
significance levels. However, it is not the case that filtering the data
with the HW model is uninformative. To an agent confronted with
deriving an optimal variance forecast, the norm here is to exploit
information in both the historical path of stock prices and contem-
poraneous option and stock prices.

An alternative regression is run, and the results are provided in
Table 5. Here the dependent variable is defined as the variance-
measured model error: z, — ¢, The regressor is the updated sample
variance estimate at time ¢. Test statistics are derived from the GMM
covariance matrix as in Table 4. Except for ROK (also an outlier in
the optimal forecast analysis, with an insignificant negative weight
on ¢,), the intercept in this regression is positive and significant. The
coefficient on the current variance estimate is negative and significant.
Note that the order of magnitude of the intercept is the same as the
dependent variable itself. The r? values reported in Table 5 are high.
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In half of the cases, more than 45 percent of the variance-measured
pricing error is explained by the evolution of the current variance.

2.4 Interpretation of results

The results of the different experiments conducted are in general
inconsistent with the joint hypothesis of the stochastic variance option
pricing model and informational efficiency. This inference is robust
across the in- and out-of-sample experimental designs. The tests
uncover two facts for the 10 companies in the sample:

1. Implied variance tends to underpredict realized variance (see
mean error in Table 3 and the significantly positive intercept in Table
5).

2. Forecasts of variance from past returns contain relevant infor-
mation not contained in the market forecast constructed under the
HW assumptions. The optimal weight placed on these forecasts of
realized variance is negative (see Tables 4 and 5).

We refer to the results in Table 2 and ask whether these charac-
teristics can be due solely to the bias inherent in our procedure for
implying volatilites under the assumptions of zero correlation between
the instantaneous rate of change in the stock price and the instan-
taneous variance and linearity of the pricing model. The smallest
percentage bias in the data is for CSC. Here the mean error of implied
variance from Table 3 is 33.48, and the level of variance is 590.52
(see Table 1, specification 1), a percentage error of 5.67. From Table
2, under the joint null, we would expect a percentage error of —0.25
percent; if the estimated percentage error fell between —0.67 and
0.18 percent, we would be unable to reject the null at an approximate
5 percent level of significance.’? For Tandy, as a more representative
company, the expected bias under the null is 0.94 percent, with a
two-standard-error range of 0 to 1.36 percent. The bias in the data is
27.54 percent. In all 10 cases, the out-of-sample forecasting error lies
well outside the calibrated two-standard-error confidence interval.
Thus, the documented underprediction of implied variances cannot
be attributed to the two potential sources of bias.

Also, from Table 2, we ask whether the empirical relationship
between the forecast error of the implied variance and the current
variance is solely a result of the approximation procedure used to
imply variances. It is possible that the negative coefficient on H, (or
G,) in the encompassing regressions picks up a tendency for the bias

12 Recognizing that the unconditional variance is estimated with sampling error, add two standard
errors to this estimate, and the percentage error is 5.1. The inference is unchanged.

321

2102 ‘ZT JoqUIBAON U0 BUOZIIY JO AlISIBAIUN Te /B10°'S[eulno [pioxo's Ly :0ny wody papeoumoq


http://rfs.oxfordjournals.org/

The Review of Financial Studies /v 6 n 2 1993

in implied variance, though small, to change with the level of vari-
ance. Note from Table 2 that in all 10 cases the inherent percentage
bias is inversely related to the level of variance, V(0). However, the
magnitude of this phenomenon is very different from that manifest
in the data. Federal Express is a typical case. From the three sets of
values in Table 2 (generated with 1000 draws, 100 times), the change
in absolute bias divided by the change in level of variance is —0.008.
From Table 5, the change in the forecast error relative to a change
in historical variance is —4.81.* Therefore, whereas we expect a neg-
ative coefficient on historical variance, the size of this coefficient
computed from actual data is too large to be the result of the inherent
biases in the experimental design.

Since the biases inherent in our extraction procedure are unlikely
to be the reason for the rejection of the null hypothesis, we can
speculate as to the potential causes. One interpretation of the statis-
tically significant negative effect of the updated sample variance is
that market participants totally ignore the information contained in
past realizations of returns. An alternative interpretation is that the
market overreacts to recent volatility shocks: too much weight is
placed on the recent past of the variance process. A current increase
to volatility raises the sample variance, but the negative §8; suggests
that this shock is temporary. However, options traders impute a per-
manence to the shock, leading to an underprediction of variance
[Stein (1989)].

Given informational efficiency, our results can be explained by the
existence of a risk premium applied to the nontraded variance pro-
cess. Recall that an assumption underlying the use of the implied
variance from the model as an instrument for the market’s forecast
of variance is that volatility risk is unpriced. The option price is
independent of risk preferences if agents are risk-neutral, or if the
instantaneous variance is uncorrelated with aggregate consumption
and, therefore, is uncorrelated with marginal utility of wealth. If this
assumption is false, then observed option prices will include a risk
premium. For example, if variance uncertainty gives negative utility
to traders, the observed option price will be lower than the risk-
neutral price, ceteris paribus. When the observed price is applied to
the Black-Scholes formula, the implied variance will be correspond-
ingly lower than actual variance. As noted, we document this
underprediction by the implied variance for all stocks in the sample.
The negative coefficient on the current level of variance means that

13 The regression coeficient reported in Table 5 is a first derivative analogous in its interpretation to
the ratio of changes reported. Although the magnitude of change in the variance level is large in
Table 2, the size and sign of the pseudoderivative are virtually identical across companies and
independent of the size of change in V(0).
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the risk premium is time dependent. Specifically, the implied variance
rises relative to the future (realized) volatility as the stock’s variance
rises. Thus the variance risk premium embedded in option prices
diminishes as the stock’s variance increases.

Melino and Turnbull (1990) use numerical methods to evaluate a
partial differential equation in the spirit of Garman (1976), and they
find evidence to support the notion that a nonzero risk premium on
the variance process exists in the Canadian dollar-U.S. dollar exchange
rate option market. They restricted the price of variance risk to be a
constant. Our results suggest that such a risk premium is time-varying
in the stock market.

Our empirical analysis is confined to constructing an optimal vari-
ance forecast. Since we reject the joint null hypothesis of market
efficiency and stochastic variance option pricing model-based pricing
of these options, these results do not indicate that one could take
the optimal variance forecasts and use them to “beat” the option
market. It is plausible that the market’s forecast as embodied in option
prices is optimal, but that filtering the prices through the simple
option pricing model distorts the forecast. Thus, if one used the
“optimal forecast” from the regressions, the profits generated by that
strategy would be offset by volatility risk if this trader’s utility function
is the same as the market’s.

Although we have motivated this experiment as a test of the restric-
tions of an asset pricing model, the tests also provide insights into
the nature of the variance process for these individual stocks. The
poor out-of-sample performance of GARCH at the 90- to 180-calendar-
day horizons appears inconsistent with its good in-sample fitand good
forecast performance at short horizons [see Akgiray (1989)]. This set
of results is consistent with a variance process that is subject to highly
persistent shocks at low frequencies and quickly dampening shocks
at high frequencies. This property of stock-return variances and its
relationship to GARCH has been suggested by Lamoureux and La-
strapes (1990). Theoretical analysis of this phenomenon is provided
by Nelson (1992). GARCH treats all innovations equally; therefore,
it overstates the persistence of high-frequency shocks, which leads
to excellent short-term forecasts but poor long-term forecasts.

As a final note, Back (1993) has developed an equilibrium model
of informed trader behavior in the spirit of Kyle (1985), where the
monopolistically informed trader may trade with an uninformed mar-
ket maker in either the stock or option market. Back shows that the
only equilibrium that does not generate arbitrage opportunities for

There is no reason to suspect a priori that this risk premium would be the same across stocks. It
is a function of the correlation between the variance process and marginal utility. To the extent
that stock variances include common factors, the risk premiums will be related.
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the informed trader is one in which the stock’s variance is stochastic
and in which the option price contains information about the future
variance that is not publicly available elsewhere. Thus, the option
allows a finer partition of information than is available from an infor-
mation set that excludes the current option price. Empirically, this
theoretical result could be rejected if, for example in our analysis,
we found that the optimal forecast weight on implied variance could
not be statistically distinguished from zero. For 7 of the 10 companies,
the implied variance has a statistically positive weight. This result is
consistent with Back’s model.

Conclusions

We examine the joint hypothesis of a class of stochastic volatility
option pricing models and informational efficiency in the options
markets using a criterion function based on the variance of the under-
lying stock returns. To examine this hypothesis, we represent the
subjective variance of the market as the implied variance from the
data and the option pricing model. By utilizing discrete-time simu-
lations of the continuous-time return process, calibrated to our data,
we show that potential biases between these two variance concepts
are small and do not affect the inferences of our tests of the joint
hypothesis.

Using both in-sample and out-of-sample tests, we reject the impli-
cation of the hypothesis that available information cannot be used to
improve the market’s variance forecast embedded in observable prices
as measured by this class of models. This result is robust across the
different test designs and to inherent measurement bias and is con-
sistent with the results of Melino and Turnbull (1990) and Day and
Lewis (1992). If the market is efficient, our results suggest that the
fundamental assumptions of the model are not sufficient to account
for the properties of the data. In particular, equilibrium models of
option pricing that do not assume investor indifference to volatility
risk appear necessary to reconcile the theory and data. The data sug-
gest that the market premium on variance risk is time varying; it is a
decreasing function of the level of the stock’s variance. Results con-
cerning the nature of this risk premium are uniform (and strikingly
similar) across the 10 stocks used in our analysis.

Although the option pricing model is rejected as the price-deter-
mining market mechanism, filtering the data with the simple model
does contain useful information that is not contained in the historical
price process of the underlying stock for forecasting the stock’s vari-
ance over a 180- to 90-calendar-day horizon. This result has normative
implications for optimal variance forecast rules, even in the absence
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of the “‘correct” equilibrium option pricing model capable of explain-
ing the data.
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