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Within the past few years several articles have
suggested that returns on large equity poritfo-
lios may contain a significant predictable com-
ponent at borizons 3 to 6 years. Subsequently,
the tests used in these analyses bave been criti-
cized (appropriately) for baving widely misun-
derstood size and power, rendering the conclu-
sions inappropriate. This criticism however bas
not focused on the data, it addressed the proper-
ties of the tests. In this article we adopt a subjec-
tivist analysis — treating the data as fixed — to
ascertain whetber the data bave anything to say
about the permanent/temporary decomposition.
The data speak clearly and they tell us that for
all intents and purposes, stock prices follow a
random walk.

Whether there exists a predictable component to the
returns on the stock market is a fundamental question
in finance. The existence of such a component would
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not be a prima facie cause to reject the notion of market efficiency, but
it would have strong implications about the nature of the time-series
properties of the investment opportunity set. If there were a nontrivial
predictable component in long-horizon stock returns, it would also af-
fect the way we test for long-run relationships between stock returns
and other variables. Samuelson (1988) demonstrates that if stock re-
turns are mean reverting, then investors with a relative risk aversion
coefficient greater than 1 should optimally invest proportionally more
in the stock market as their planning horizon lengthens. Fama and
French (1988) examine the serial dependencies in long-horizon stock
returns. They find correlation coefficients on the order of magnitude
of 28% to 60% for 3- to 6-year returns on large portfolios. Fama and
French (1988) found this evidence compelling enough to revise a prior
belief that long-horizon market returns were unpredictable. Similarly,
Poterba and Summers (1988) use classical (or frequentist) statistical
inference and find that long-horizon stock returns show significant
negative serial correlations. They issue a clarion call for a research
agenda to discern whether this predictability is due to irrational trad-
ing (which generates long swings away from “intrinsic value”) or time-
varying risk premia.

Criticisms of the statistical tests of Fama and French and Poterba and
Summers were forthcoming. For example, Richardson (1993) notes
that Fama and French’s results could have been obtained if the data
were, in fact, generated by a pure random walk. In light of this, Fama
(1991), in surveying what we know about the data, suggests that 60
years worth of data is insufficient to learn about the long-term proper-
ties of the data (i.e., the spectral density at frequency 0). Note however
that Richardson’s critique focuses primarily on a particular statistical
technique, as opposed to the actual data.

Recent studies on return predictability have recognized the lack of
power of the univariate tests and have shifted to multivariate analysis
of predictability [Fama (1991)]. Common predictors include lagged in-
terest rates and the dividend price ratio [see, for example, Campbell
(1991)). Despite the shift, a fresh look at the univariate case is valuable
for several reasons. First, the importance of the univariate findings is
still an open issue; as noted above, mean reverting behavior of the
stock market returns is of interest in its own right. Second, many of the
statistical problems that plague the univariate studies have analogs in
the multivariate setting. Third, this article sheds new light on the ear-
lier findings — both the original set of estimates, as well as their lack
of power. Finally, these predictor variables are themselves highly au-
tocorrelated, and data snooping concerns are certainly reduced when
historical prices comprise the set of predictors. We use Bayesian meth-
ods to shed light on these puzzling results. We also focus directly on
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predictability per se, as opposed to a particular null hypothesis that
suggests that there is no predictability.

The distributions of frequentist test statistics are derived by assum-
ing that the particular 60 years worth of data on hand is just one
possible such draw. For the purpose of addressing how much in-
formation is in the data on band, such a stochastic specification is
unattractive. It involves integrating over possible draws (which may
bear little resemblance to the actual data) from the null hypothesis.
To refocus attention on the data itself, rather than the statistical tech-
nique, this article adopts a Bayesian framework that treats the data as
fixed. The parameters of the model are considered random variables.
Our analysis starts with a prior belief about the parameters and an-
alyzes the extent to which the data cause us to revise those beliefs.
Put differently, frequentist analysis conditions on the null hypothesis
and performs a hypothesis test that is designed to ascertain whether
the data on hand are unusual under the null; the subjectivist analysis
conditions on the data and a prior belief about the parameters. Thus,
the subjectivist approach, which we use in this article focuses on the
effect that the data have on our prior beliefs. In order to focus at-
tention on the data, we will evaluate the effect of the prior by using
several different priors.

The model that we specify is an unobserved components model
which allows stock prices to be generated by a process that includes
both a random walk and a stationary process. The two processes
are econometrically identified by assuming that they are mutually or-
thogonal (as in Watson (1986)]. We consider a variety of prior beliefs
about the parameter space. The priors that we specify are proper
so that we can analyse explicitly the implication of the prior for the
relevant functions of interest. In this case these functions of interest
include the ratio of the random walk variance to the total variance,
and measures of the persistence of shocks to the stationary process
and impulse response functions, as well as the regression coefficient
of the temporary component of long-horizon returns on their lags (p).

The combined effect of the predictability in the temporary com-
ponent and the relative magnitudes of the two components is sum-
marized by the regression coefficient of long-horizon returns on their
lags (B). Although Fama and French (1988) used B as an indication of
the amount of predictability in returns, this autoregression coefficient
gives a limited picture of maximum predictability. Since our model
fully specifies the time-series properties of returns, we can examine
the maximum reduction in forecast error variance attainable with »
lags of returns. We will also present prior and posterior probabilities
for measures of forecast error variance conditioned on various lengths
of historical returns. The posterior densities of both of the regression
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coefficients, half-lives, variance ratios, and forecast error variance are
obtained directly, since our estimation procedure provides draws from
the conditional densities of the structural parameters of the unob-
served components model. The regression coefficients, for example,
are simply (deterministic) functions of the structural parameters. For
each prior, we combine the prior with the data and the likelihood to
construct the posterior densities of the parameters as well as the func-
tions of interest. This procedure provides posterior densities for the
functions of interest, such as the variance ratio. Thus, the estimation
procedure generates information about the location and precision of
parameters and functions directly, instead of obtaining a point esti-
mate and then having to evaluate the precision (or informativeness)
of that point estimate as a separate step. ’

We thus see exactly the sense in which the data on hand cause us
to revise our prior beliefs about these functions of interest. Despite the
frequentist conjecture that 60 some years is not an adequate sample
size to address these fundamental questions of interest, the data do
significantly cause us to revise our priors, in all cases. Specifically,
we find that unless the prior is very informative that the stationary
component is large, the data shift most of the probability mass into the
random walk component. More importantly, in all cases, the posterior
belief about the half-life of shocks to the stationary component is such
that this component is virtually nonstationary. The bottom line is that
the data do speak clearly about long-horizon predictability.

Finally, we use a diffuse prior over the hyperparameters of the
model to verify and shed light on the frequentist results. With a dif-
fuse prior, the results are similar to those obtained in the literature.
This provides evidence that the likelihood function is not driving the
results. We demonstrate that the problem with the diffuse prior on the
hyperparameters is that it has an unattractive implication for the prior
on B. The remainder of the article is organized as follows. Section 1
contains the model, a characterization of the estimation procedure,
and a summary of the functions of interest. The data are described
and the results of estimation are presented in Section 2. Section 3
provides a summary of the motivation and findings of the study.

1. Analytics

1.1 The model
Our analysis is conducted for quarterly stock returns. The model we

specify is an unobserved components model, which consists of a non-
stationary random walk (with drift) process and an orthogonal station-
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ary, autoregressive process for log price:

=g+ z, (1)

Gt = qr—1 + 1+ Uz, (2)

where ¢ is a random walk with Gaussian white noise, u ~ N(0, 03),
and z is a stationary process that is independent of u. Equation (1)
states that the stock price has two components: the random walk
component and the stationary component. Shocks to the random walk
component persist indefinitely, whereas shocks to the stationary com-
ponent are irrelevant for the construction of forecasts in the infinite
future. Notice that only p is observable; g and z are unobservable.
Nevertheless, by assuming mutual orthogonality, the parameters are
econometrically identified.!+2

In addition to the identifying restrictions noted above, complete
specification requires a model for the stationary component of returns.
Assume it has an AR(m) representation

=z 4 YmZi—m + €, 3)

where ¢, ~ N(0, 02).?> The implied model for returns (prices are ad-
justed to include dividends paid and adjusted for stock splits) is

1" = Drv1— Dr
= (Gr+1 — q1) + (Zr41 — 21)
= pu+ U1+ 2141 — 22 “

Because z; is stationary, so is 2,41 — 2, which we denote x;. Equation
(4) states that the return is the sum of a white noise process (first
differenced random walk) and a stationary process.

! This model was used by Watson (1986) to decompose GNP from a frequentist perspective. Earlier
examples of classical identification and estimation of unobserved components models include
Harvey (1985) and Nerlove et al. (1979).

2 Quah (1992) demonstrates that there are infinitely many identification schemes for the decom-
position of a nonstationary series into permanent and temporary components, depending on the
model for the nonstationary portion and the correlation between the two processes. For stock
prices, the random walk model is theoretically motivated, as is orthogonality between the random
walk and temporary component. An alternative tack to decompose the series employs additional
time series (e.g., dividend data) to identify structurally the components [see, e.g., Cochrane (1992)
and Cochrane and Sbordone (1988)].

3 The identifying restrictions in our model are identical to those of Fama and French (1988). Fama
and French do not, however, have to specify a model for the stationary process, since they directly
estimate the function of interest 8. This generality is costly though, because direct estimation of §
is accomplished using a rolling-overlapping procedure that has a nontrivial effect, including bias,
on the estimation itself.
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A classical approach obtains the parameter estimates by maximizing
the log-likelihood function (apart from a constant):

logc(l’lﬂ 03, 1/’1» ey ‘/’m, 052)

= —Slogll, |~ S —uD T —u), 6
where I, is the covariance matrix of r = (nry, ..., r7):
o2+ v 2)’1 e YT
r,=| 7T v ©
yT.—l VT.—Z : 03 + Yo

with y; = cov(x;, x4 ;). Notice that ', is a 7' x 7' matrix.

1.2 Estimation

This article exploits a set of tools that are most naturally couched in
a Bayesian context to deal with this problem. Not only have efficient
procedures been developed to implement the measurement problem,
but we are also able to construct the posterior density for all of our
functions of interest (since these may be expressed as deterministic
functions of the underlying parameters of the process). Although this
posterior density is obtained numerically, its error is controllable. In
contrast, the asymptotic error of the classical approach depends on the
sample size and it is difficult to determine whether or not the sample
size is large enough to justify the asymptotic theory. For the problem
at hand, considerations of power and size are somewhat controver-
sial. The question of how to do the asymptotics in the case of Fama
and French’s (1988) regression statistic, 8, is controversial. Richardson
and Stock (1989) argue that the asymptotics should accommodate a
concurrent growth in both the maximum return horizon (K) and the
length of the data set (T). The asymptotic properties of these estima-
tors is shown to be sensitive to whether K is allowed to grow along
with T or is held fixed [as in Fama and French (1988)). There is no
room for such controversy with the posterior densities derived in this
analysis.

In a frequentist approach geared toward testing there is also a
Davies (1977, 1987) problem in this context, as discussed by Wat-
son (1986). Specifically a classical test of whether o2 is zero involves
parameters that are not identified under the null (the vector of ¥). By
assigning zero probability (in our prior) to the state of nature — o2 is
exactly 0 — our approach finesses this problem.

The Bayesian analysis starts with a prior distribution on the param-
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eter space: Py(6), where 6 = (i, 02, Y1, ..., ¥m, 02) denotes all the
parameters of the model. By Bayes’ theorem, the posterior density is
proportional to the prior density times the likelihood function:

P(6) o« Ry(0)L(6). ™)

The key in applications is to compute functions of interest which can
often be summarized as the computation of the expected value of
certain functions:

Eg(0) = /8(9)1’(‘9)619- 8

As noted in the introduction, the functions of interest in understand-
ing predictability on long-horizon stock returns include the regression
coefficient of long-horizon returns on their lags, the ratio of the tem-
porary component variance to the total variance, the half-life of shocks
to the stationary component of prices, the impulse response function
of shocks to the stationary component, the regression coefficient of
the temporary component of long-horizon returns on their lags, and
the forecast error variance as a function of the size of the condition-
ing set. For example, if g(0) = B, Eg(6) tells us the posterior mean
of B, indicating the extent to which the data cause us to revise our
beliefs about the size of the autoregression coefficient of long-horizon
returns. However, it is difficult if not impossible to obtain g(@) analyt-
ically. Furthermore, standard quadrature methods require a nontrivial
amount of computational time, making them intractable in our appli-
cations. Fortunately, Monte Carlo integration with the Gibbs sampler
offers an attractive solution.

The simple, intuitive idea behind Gibbs sampling is the use of all
conditional densities to obtain the joint density, bypassing the diffi-
culty of drawing samples directly from the marginal posterior distri-
bution in Monte Carlo integrations. From a Bayesian perspective, la-
tent variables and parameters are handled in the same manner. Gibbs
sampling provides a tractable method of generating random draws
from the latent variables and parameters conditional on the data and
the prior. The tractability arises as the latent variables and parame-
ters are drawn sequentially, conditioned on previous draws from the
other parameters and latent variables. The sequential structure of the
Gibbs sampler implies that we cannot draw u directly. Instead, define
v = u/o,. We augment the data with v, where v = (v, ..., v7).
Note that the joint distribution of v and r is

(:>NN[(£1>’(;J ;I)] ©
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The class of priors that we consider is

P ~ N@, 8oL, (10)
2
(20
2~ =2, 1y
Vo
Ou ~ N(6u’ KO)v Uu > 0' (12)

(Thus the prior on o, is a truncated normal.) A diffuse prior is specified
for p. None of the results or functions of interest depend on u. The
prior density of the m vector 1 is complicated by the fact that the z
process must be stationary.

The log likelihood of the model is

1 1
L O V1, ooy Yy 08) ¢ = 0g | Ty = S (0 = u)'T7 (e — pd),
(13)
(recall T,, is the covariance matrix of r, defined in Equation (6)
above). Given the prior density on the parameters and the likelihood,
Bayes' theorem [Equation (7)] provides the posterior density. For the
class of priors used, the following posterior densities result:

u~ N(iL, 02), (14)
P ~ N(@, var(v)), 15)
ol ~ vx#z‘z-, (16)
oy ~ NGy, k1), 04 > 0, an
where
f=1T(r—o,v)/1ITZ1, (18)
ol =1TgD ™, 19)
6y =Vl (r — ul)/vVItv, (20)

Iy is the (T x T) covariance matrix of x; and

22 4 22—m
zZ Z ‘e Za—m
= 2|, z=| 7 > : QD
2T+1 Zr ot ZT+1-m
k=1/ZT; )z, (22)
var(¥) = (/8o + ZZ/0 )", (23)
¥ = var(¥) (P /8 + Z'z/0?), 24
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and v; = v+ T, $* = Lz — Z9)(z — Zy), s{ = (vos} + Ts)/v1,
k1 = kok/(ko + k), and G, = (kGuk00,)/(ko + k). The conditional
distribution of v is

v|r ~ Mo, T, (r — ul), 1 — oL, ) (25)

The way the Gibbs sampler works is that we draw from each of
the posteriors — conditional on the data and the current draw from
each of the other parameters and v — as above and recognize that
the marginal density is the average of the conditional densities. Given
the current draw on v, 0y, i, and the augmented initial values of the
z process (i.e., 21, ..., Z2-m), the values of z may be formed directly
(z141 = 21 + 11 — u — o,v;) (where v, is a pseudorandom draw from
a standard unit normal density). At each draw we also construct a
new set of the augmented (or starting values of) z by projecting the
autoregressive model backwards. This eliminates a need to condition
on arbitrary starting values for z. In this manner we integrate over
these starting values, in the same sense that we integrate over the v in
forming the posterior densities, which is natural given the sequential
structure of the Gibbs sampler. An identifying restriction of the unob-
served components model is that the vector 1 obtained at each draw
from the Gibbs sampler be such that z is stationary. This condition is
verified at each step. Values of 1 that are inconsistent with stationarity
are discarded.

In practice, the starting condition is arbitrary. We take 11,000 draws
from the posterior densities, and to define the posterior density, we
discard the first 1,000 draws. The entire process is summarized by the
densities of the parameters. Any functions of interest can now be eval-
uated by constructing their densities from the underlying parameters.
Thus, for example, the density of the variance ratio of the random

2
walk to the total (%) is constructed by taking this ratio in each of the

10,000 draws. These 10,000 values of the ratio comprise the posterior
density of the variance ratio.

This procedure amounts to Monte Carlo simulation (to compute the
marginal densities), and as such there is some numerical error in the
computations. The numerical accuracy of the Gibbs sampler may be
assessed using the procedure developed by Geweke (1992). All of the
information regarding the numerical efficiency of the Gibbs procedure
is contained in the spectral density at frequency O of the series of
Gibbs draws on a particular function of interest. Denote this Sg(0).
The periodogram of the 10,000 Gibbs draws on a particular function
of interest may be estimated using a fast Fourier transform. Next,
the spectral density at frequency 0 is approximated by smoothing the
periodogram using both a Daniell window [following Geweke (1992)1
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and a Parzen window with spectral window parameter M of (V 5..3),
which is 30 in our case (recall that N refers to the number of Gibbs
draws after eliminating the preliminary sample).

Having identified S;(0) (which will be different for each parameter
or function of interest), we can define two measures of the numerical
efficiency of the Gibbs sampler. First, the numerical standard error
is [% - S¢(0)]°. The relative numerical efficiency of the mean of the
function of interest is var{g(8)]l/Ss(0) [a general discussion of assess-
ing numerical accuracy in Bayesian estimation is Geweke (1989)]. As
Geweke (1992, p. 8) describes: “The number of drawings required
to achieve a given degree of numerical accuracy is inversely related
to the relative numerical efficiency of the Gibbs sampling process for
the function of interest.” We provide the reader with the numerical
standard error and the relative numerical efficiency of the parameters
as well as the functions of interest, when we discuss the results, to
give a feel for the technical attributes of the Gibbs sampler.

1.3 Functions of interest

The Gibbs sampler provides a series of draws on the structural pa-
rameters of the model. These draws provide the posterior densities
for the parameters. All of the functions that will characterize the pre-
dictability in long-horizon returns may be written in terms of these
structural parameters, and therefore for each draw from the structural
parameters we can construct a draw from any of these functions and

2
construct their posterior densities accordingly. The functions % and

2
%& surmmarize the contributions of the differenced random walk and

the stationary process, respectively, to returns. As noted above, isolat-
ing these variance ratios may be misleading, however (as we will see
below), because the stationary process may be virtually nonstationary,
that is characterized by very persistent shocks.

As noted in the introduction, we measure the persistence of shocks
to the stationary z process using the half-life. The notion of half-life is
not characterized by the same sort of knife-edge tension as the notion
of a unit root. Half-life is defined, and finite, for any stationary process.
A stationary process may have its largest eigenvalue very close to 1
so that the half-life is very long. This is important to note, because a
test for a unit root may be devoid of economic content. The half-life
of a shock indicates the number of periods (in this case quarters) that
it takes for one-half of the impact of the shock to dissipate. (For a

4 Geweke (1992) does not explore the effect on estimates of numerical accuracy of different window
choices, and this is certainly of tertiary order of importance in the present article. For a discussion
of the Daniell and Parzen windows see Priestley (1981, pp. 437—449).
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nonstationary process, half-life is infinite.) Half-life is defined as:

log 2 =~
half-life=1—- ——; (1= ;
alf-life log X ;W/

An alternative way of presenting the damping pattern of shocks
to a stationary process over time is the impulse response function.
Popularized by Sims (1980), the impulse response functions are the
coefficients in the moving average representation of the stationary
component. They are empirical comparative statics, measuring how
much impact a unit standard deviation shock to an exogenous pro-
cess today will have in the future. Given the parameters of the AR
process of the stationary component, the impulse response functions
are computed using polynomial division:

¢ = o J®’y, (26)

where
, (27)

and J = (1,0, ..., 0) [see Baillie (1987)]. A moving average represen-
tation for the stationary component is

o0
X=comtami =) Gy, (28)
=0

Another way to characterize the predictability of returns is to iso-
late the regression coefficient of long-horizon returns on their lags.
First, consider the autoregression of the temporary component of
long-horizon returns pg, and the slope of regression of z x — 2
on z; — Z_g:

covlziig — 21, 21 — 21—kl
Pk =

(29)
varlz; x — 2z
As shown by Fama and French, (1988), px goes to —0.5 as K becomes
large.> However, for small values of K, px may be close to 0. To
compute px from a draw of the parameters, it is enough to express

> This follows because z is a stationary process. Therefore, the covariance between z,x and z,
approaches 0 as K increases. Intuitively, for large K, this amounts to a regression of a random
variable on its negative plus an orthogonal random variable with the same variance.
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it as a function of the covariances of the x;’s, since these covariances
are already simple functions of the parameters:

K-1 K-1
Zi:o Zj'—‘o COV(xi’ 'x]—K)

PK = 30
YRy cov(a, %) oo

Clearly the predictability of long-horizon returns will depend on p
as well as %& This may be summarized by the g function, which is
the slope of the regression of ryx — 1 on 1, — ri_x:

covlryix — 11, 11 — 1kl

Bx =

varlry g — 77

_ px varlz x — z] G1)

var[z,+1< bt Z[] + Var[%+k - %] '

Note in our model that var{z;, g — 2] = Zf:_ol Zjl.:ol cov(xy, x;) and
varlg,, k — g} = Ko?2. Bk has interesting alternative interpretations. If
the stock price does not have a stationary component, B¢ = 0. If the
stock price does not have a random walk component, Sx = px. If the
stock price has both a stationary and a random walk component, the
behavior of Bx is more complex. Fama and French (1988) suggest a
U-shape of B¢ over K.

B is only a partial measure of the predictability of long-horizon
returns. We might also be interested in the optimal linear forecast
of k-step ahead returns. A measure of predictability then is the ratio
of the conditional forecast error variance to the total variance. The
minimum forecast error variance for any horizon would condition on
the infinite past. Consider the 1-step (quarter) ahead forecast error
variance. We can define

2
0’3-—(0’34—06)

maximum forecastability = >
g
:

’

which indicates the percentage reduction in the forecast error variance
obtained by conditioning on the infinite past relative to an uncondi-
tional forecast.

Since the infinite past is not available when constructing forecasts,
we also examine the prior and posterior densities for the 1-step ahead
forecast error variance conditional on # lags, as » varies from 1 to 300
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quarters. These forecast errors may be obtained recursively using the
innovations algorithm:®

gO = I‘rr(lv 1)’ (32)

Cnon—k = g/e_l{rrr(n +1,k+1)
k=1
— D Cek-jCnn—y&l k=0,1,...,n—1, (33
=0
n—1
En=Ty(n+ln+1)=) ¢2, &, (34)
j=0
where T',,(j, k) represents the (j, k) element of T',,. Here, &, repre-
sents the 1-step ahead forecast error variance, conditional on 7 lags.

Thus, & corresponds to the variance of r; ¢ is an intermediate variable
in the recursions.

2. Data and Results

The stock return data is taken from the CRSP tapes. We use the
monthly returns file on the CRSP value-weighted NYSE index (with
dividends). Quarterly returns are constructed by compounding the
monthly returns. This series covers the period 1926:1 through 1990:1V,
providing a total of 260 observations.” Quarterly data are used in this
article for two reasons. First, quarterly data is more consistent with the
unconditional Gaussian assumptions used throughout than is higher
frequency data. Second, the computational burden would be insur-
mountable with monthly data.

In the next five subsections we present results for two proper (in-
formative) priors. In Section 2.6, we use a diffuse prior to clarify the
findings and shed light on earlier findings.

2.1 Prior 1

The results from the first prior are presented in Table 1. For each pa-
rameter or function of interest, the first row corresponds to the prior
and the second row to the posterior. Here, the prior on the variance

¢ Conceptually, this amounts to solving a series of difference equations. This algorithm exploits the
special structure of the autocovariance matrix; see [Brockwell and Davis (1991), p. 172].

7 The data differ slightly from that used by Fama and French (1988). Fama and French’s data go
through 1985. They use monthly returns to construct the long-horizon returns, and they deflate
returns using the U.S. CP1. To demonstrate the similarity between the two data sets, we replicate
the Fama and French OLS regressions for 1- through 6-year returns. The following are the Fama
and French (1988, p. 258) (our) OLS estimates for these horizons: 1. —.05 (-.12); 2. —.24 (—.23);
3. =32 (—.29); 4. —.19 (—.25); 5. —.07 (—.21); 6. .09 (—.09).
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Figure 1

Prior and posterior densities for the two priors

var(u)/ var(r) is the ratio of the variance of the permanent component to the total variance of
returns on the CRSP value-weighted index. Rho is the autocorrelation coefficient of the temporary
component of returns. The top row reports the prior densities and posterior densities for the
variance ratio. The lower row reports the prior and posterior densities for Rho. The data tend
to pull p toward 0, although the separate components of predictability are not separately well

identified.

ratio of the random walk to the total variance is centered at 14.64%.
The interquartile range for this variance ratio is 8% to 20%. The lighter
curve of the panel entitled “Prior 1,” in the top panel of Figure 1, isa
graphical representation of the prior on this variance ratio.® Recall that
the prior (Py(0)) is fully specified by the vector (v, sg, Gu, Ko, 80, V).
The implications of this vector for the prior density are not so straight-
forward. Within the class of informative priors considered [Equations
(10) through (12)] the effect of the choice of this vector on the func-
tions of interest is not obvious. Generally speaking, & characterizes
the precision of the prior on the autoregressive coefficients (i.e., lower
8y implies a tighter prior). Similarly, 1o and ko characterize the con-
fidence the prior places in knowledge of o and oy, respectively.
However, in this application attention is focused on functions of the

8 The prior is constructed by taking 10,000 draws from the prior densities (Equations (10) through
(12)]. For purposes of the plots, all densities are approximated using a rectangular window to
smooth the histogram.
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Table 1
Distribution of parameters for prior 1 260 quarterly stock returns
Percentile
Variable Mean Std dev. 5 25 50 75 95
o, 0.0402 0.0138 0.0171 0.0310 0.0403 0.0496 0.0630
0.0420 0.0138 0.0187 0.0326 0.0422 0.0513 0.0645
A 0.1015 0.0174 0.0773 0.0893 0.0992 0.1110 0.1334
0.1092 0.0074 0.0966 0.1045 0.1095 0.1141 0.1208
o, 0.1115 0.0173 0.0870 0.0993 0.1094 0.1213 0.1426
0.1181 0.0050 0.1101 0.1146 0.1179 0.1213 0.1222
¥ 0.9633 0.0288 0.9158 0.9442 0.9631 0.9829 1.0108
0.9718 0.0250 0.9301 0.9550 0.99719 0.9881 0.9923
123 —0.0017 0.0288 —0.0496 —0.0212 —0.0018 0.0180 0.0454
0.0212 0.0258 —0.0212 0.0038 0.0210 0.0387 0.0636
V3 —0.0019 0.0287 —0.0493 -0.0212 —0.0017 0.0175 0.0451
0.0278 0.0079 —0.0146 0.0108 0.0277 0.0450 0.0704
¥y —0.0115 0.0285 —0.0584 —0.0307 —0.0111 0.0078 0.0350
—0.0208 0.0247 —0.0619 —0.0372 —0.0209 —0.0041 -0.0198
By (%) —17.68 10.32 --35.60 —25.28 —-17.15 —9.24 -2.33
0.13 1.71 -1.26 —0.46 0.12 0.76 1.76
p12 (%) --21.61 12.49 —42.97 —31.22 -21.19 —11.32 —-2.77
0.12 2.04 —1.51 -0.55 0.15 0.88 1.98
Half-life 66.5 511.3 6.1 10.0 16.3 33.4 157.6
(qtrs) 1.9 x 107 9.8 x 10"? 13,672 39,609 81,547 198,043 1,155,246
o2
”—"5 0.1464 0.0872 0.0258 0.0795 0.1350 0.2000 0.3082
i 0.1400 0.0842 0.0251 0.0762 0.1282 0.1899 0.2959
ol
“—§ 0.8536 0.0872 0.6918 0.7999 0.8650 0.9205 0.9742
' 0.8600 0.0842 0.7038 0.8101 0.8717 0.9238 0.9749

For each parameter or function, the first row represents the prior density and the second row
represents the posterior.
Model:

P=q+2z

q ~ random walk (with drift); u# = A(q); x = A(2).
2z =z T Veza ¥z + Yaza €

Estimation:

The posterior density is constructed from 10,000 Gibbs draws as described in the text. A start-up
sample of 1,000 draws is discarded to remove dependence on initial values. The data are 260
quarterly returns on the CRSP NYSE value weighted index.

Oy, O, 0, and ¥, (= 1,..., m) are the parameters of the likelihood function. The remaining
functions may all be written in terms of these parameters: By, is the slope of a regression of
returns compounded over 12 quarters on lagged 12-quarter returns (i.e., the predictability in 3-year
stock returns); p1; is the slope of a regression coefficient of the stationary component of returns
compounded over 12 quarters; half-life represents the number of quarters that it takes for one-half

of a shock to the stationary component of returns to dissipate: (half life = 1 — —%—).
log( ) ¥j)
f=1 "

hyperparameters, not the hyperparameters themselves. Thus, to se-
lect the priors on the hyperparameters we simulate from the prior to
examine the prior densities of the functions of interest. For example,
the parameters used to generate the prior densities of Table 1 are as
follows: vy = 20, s¢ = 0.0095, &, = 0.04, ko = 0.0002, 5o = 0.000975,
¥ = 0.975, ¥, = 0.01, ¥3 = 0.01, and ¢4 = 0.

The model specified here is an AR(4) for z. (We used several priors
with an AR(2) which produced qualitatively similar posteriors.) The
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Table 2
Distribution of parameters for prior 2 260 quarterly stock returns
Percentile
Variable Mean Std dev. 5 25 50 75 90
oy 0.0847 0.0629 0.0071 0.0350 0.0724 0.1212 0.2057
0.0990 0.0131 0.0774 0.0940 0.1007 0.1068 0.1151
g, 0.0994 0.0415 0.0565 0.0726 0.0899 0.1142 0.1751
0.0514 0.0167 0.0290 0.0401 0.0490 0.0599 0.0826
o, 0.2221 0.2207 0.0933 0.1362 0.1797 0.2431 0.4516
0.1192 0.0054 0.1107 0.1155 0.1190 0.1227 0.1287
¥ 0.6599 0.3990 —0.0182 0.3953 0.6725 0.9300 1.3024
0.6274 0.2173 0.2586 0.4936 0.6344 0.7690 0.9617
¥ —0.0743 0.4064 -0.7442 —0.3532 —0.0756 0.2038 0.5985
0.2160 0.1624 —0.0517 0.1131 0.2195 0.3245 0.4782
¥ —0.1475 0.3819 —0.7442 —0.3532 —0.0756 0.2038 0.5985
0.4485 0.2160 0.0785 0.3609 0.4805 0.5874 0.7125
¥y —0.0274 0.3305 —0.5819 -0.2610 —0.0207 0.2064 0.5147
—0.2920 0.1711 —0.5430 —0.4066 —0.3089 -0.1965 0.0193
B2 (%)  —22.26 20.74 —59.61 —35.44 -17.72 —6.83 -0.83
0.95 257 -1.02 —0.46 0.05 1.43 6.04
012 (%) —41.99 20.62 —70.97 —-50.79 —46.67 ~34.12 —4.80
0.24 9.50 -15.72 —5.40 0.34 5.75 15.32
Half-life 8.0 78.4 1 2 2 4 18
(qtrs) 2.5 x 101 1.4 x 10"2 2,972 11,073 26,059 67,296 364,815
o2
U—'jr 0.2554 0.2486 0.0013 0.0373 0.1713 0.4256 0.7553
’ 0.7009 0.1506 0.4259 0.6322 0.7202 0.7963 0.9064
a2
a—’; 0.7446 0.2486 0.2447 0.5744 0.8285 0.9626 0.9987
’ 0.2991 0.1506 0.0936 0.2036 0.2798 0.3677 0.5740

See notes to Table 1. Specification:

=Yz + Y2z + ¥azios + Yazios + €

prior is relatively tight on the AR coefficients.” The median half-life
of shocks to z is 16.3 quarters, and the interquartile range is 10 to
33 quarters. (As can be noted from the reported percentiles in the
tables, half-life is potentially very skewed to the right. Therefore, mean
and variance may be poor estimates of central tendency and scale,
respectively.)

The data speak very loudly about the total return standard devia-
tion. Here the prior is centered at .112, and the posterior is centered at
.118. The interquartile range for the prior is .09 to .12; for the posterior,
it is .115 to .121. For this prior, the prior dominates the variance ratio
and the posterior ratios closely resemble those of the prior. This can
be seen in the top panel entitled “Prior 1” of Figure 1. As noted above,
predictability has two components: one is measured by the variance
ratio, the other by p. As can be seen in the lower panel of Figure 1 for

? Stationarity is imposed on the AR process. Therefore, in order to have a prior that puts a lot of
mass on the largest eigenvalue close to 1, the standard deviation of the prior (i.e., §) must be
small.
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Figure 2

Prior and posterior densities for 3,,

Bi; is the 12-quarter autoregression coefficient for returns on the CRSP value-weighted index.
Each column reports a prior density for this parameter and the corresponding posterior density.
Whereas the priors are fairly diffuse, the posteriors are tightly distributed around 0.

“Prior 1,” the prior for p1; is flat over its range, whereas the posterior is
tightly concentrated at 0. Although the large temporary component is
stationary by design, shocks to this process are much more persistent
than the prior. The median half-life of a shock to z is 81,547 quar-
ters, and the interquartile range spans 39,609 to 198,043 quarters. For
purposes of prediction, a stationary process with a half-life of 81,000
quarters (over 20,000 years) may as well be non-stationary.

The combined effect of the variance ratio and the persistence to
the stationary process on long-horizon return predictability is seen
in Figure 2 (and in the pair of rows labeled B;; in Table 1). Here,
because the posterior places so much mass very close to 0, the prior
and posterior must be placed in different panels because of the scaling
of the densities. By examining the top panel of Figure 2, we see exactly
the implication of our prior beliefs over the structural parameters on
the predictability of returns. For this particular prior, although the prior
forces the temporary component to be very large, the data suggest that
price shocks are essentially permanent.
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2.2 Prior 2

Prior 2 roughly corresponds to the alternative evaluated by Richard-
son (1993, p. 205) [and credited to Poterba and Summers (1988)],
where three-fourths of the return variance comes from a predictable
component. The parameters used to generate this prior are as fol-
lows: vy = 5, & = 0.007, &, = 0.014, ko = 0.01, & = 0.3, y, = 1.1,
¥r = 0.1, Y3 = —0.22, and ¥4 = 0.

Looking at the lower panel for Prior 2 in Figure 1, we see that the p
coefficient for the temporary component of 3-year returns is concen-
trated around —.5. Despite this, the data combine with the likelihood
to shift our prior so that it is centered over 0. From the upper panel
of this figure, we also note that the data shift our beliefs about the
proportion of total return variance that is attributable to the differ-
enced random walk from a median of 17% in the prior to 72% in
the posterior. Once again, the variance ratio may be misleading, as
can be discerned from the panel “Prior 2” in Figure 2. The data shift
our beliefs about 8 from a very diffuse distribution over —.5 to 0 in
the prior to a tight concentration around 0 in the posterior. Here, the
posterior on B (and, of course, p) places some mass in the positive
line, which is not the case with the prior. As noted above, this is
due to the very long half-life of the stationary process. Three years
is not a long enough period of time to achieve the limiting results
for p.

To further isolate this phenomenon, Table 3 contains the prior and
posterior densities for ; and p; as j goes from 4 to 40 quarters. The
median p in the prior is —42% for 4 quarters and it approaches —.5
monotonically as j increases to 40 quarters. The posterior behaves
very differently. The median p4 is —.08, and at 8 to 40 quarters this
value is very close to 0. Notice too from Table 3 that, even in the
prior, B; does not exhibit a U-shaped pattern in j. Rather, ; in the
prior has a median of —.24 at 4 quarters, and this declines monoton-
ically in j to —.11 at 40 quarters. Also notice that for j > 8 quarters,
the priors for both 8 and p do not include positive values. For j in
the range 4 to 40 quarters, in the posterior, f; is largest in absolute
value for j of 4 (where its value is —1.12%). At all other values of j,
the median g; is virtually 0 and the posterior densities are fairly tight
around 0.

By comparing the results from priors 1 and 2, we note that a tight
prior on the variance ratio can cause the posterior to closely resemble
the prior, whereas a less precise prior results in a material shift in the
posterior of this ratio. However, for both priors, p is shifted toward 0
by the data and the summary measure of predictability, B, is tightly
centered on 0. This suggests that the two components of predictability
are not separately well identified, but that the combined effect is.
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Table 3
Distribution of regression parameters (¢ and g) for prior 2 as a function of the
compounding interval

Percentile
Variable Mean Std dev. 5 25 50 75 95

Bs (%) —27.32 28.82 —79.06 —45.91 —23.56 —7.82 14.16
-0.12 4,55 —-5.38 —2.82 ~1.12 1.34 9.12

Bs (%) —22.82 18.31 —64.76 —37.10 —18.39 —6.93 3.20
1.26 3.40 -1.70 —0.71 0.08 2.06 8.32

Bz (%) —22.96 20.74 —59.61 —35.44 -17.72 —6.83 —-0.83
0.94 257 —1.02 —0.46 0.05 1.43 6.04

Bis (%) —21.28 19.59 —54.03 —34.39 —16.50 —6.30 —1.04
0.64 2.08 —0.90 —0.42 -0.02 1.01 4.48

Bao (%) —20.68 19.09 —~52.08 —33.73 —15.60 —5.76 —1.08
0.53 1.77 —0.67 —0.31 0.00 0.81 3.57

Bas (%) —20.04 18.72 —51.18 —32.88 —14.58 ~5.22 —1.03
0.41 1.58 —0.57 —0.27 —0.01 0.66 2.90

Bas (%) -19.45 18.31 —49.97 —32.08 —13.93 —4.82 —0.99
0.34 1.47 —0.50 —0.23 —-0.01 0.56 2.45

B2 (%) —18.70 18.10 —49.76 —31.32 —12.89 —4.33 —0.90
0.28 1.41 —0.43 —0.21 —0.01 0.48 212

Bas (%) —18.32 17.96 -49.56 —30.63 —12.32 —4.10 —0.89
0.23 1.38 —0.39 —0.19 —0.01 0.42 1.84

Bio () —17.67 17.61 —49.37 —29.49 —11.39 —3.79 —0.79
0.19 1.37 —0.35 -0.17 —0.01 0.37 1.64

pi (%) —39.53 31.95 —86.15 —62.03 —41.77 —22.27 19.73
—8.16 20.92 —42.30 —22.75 —~8.18 635 26.15

ps (%) —39.26 24.33 —75.21 —52.03 —43.39 —28.03 6.17
0.65 13.54 —21.35 -7.55 0.58 8.86 22.64

p12 (%) —41.99 20.62 —70.97 —50.79 —46.67 —34.12 —4.80
0.23 9.50 —15.72 —5.40 0.34 5.75 15.32

P16 (%) —43.36 18.55 —67.35 —50.46 —48.33 —38.60 -9.11
—0.72 8.04 —14.56 ~4.97 —0.17 397 11.01

020 (%) —44.64 16.99 —65.05 —50.23 —49.27 —41.44 —12.89
—0.48 6.40 ~11.57 ~3.75 —0.01 322 8.66

P24 (%) —45.34 15.64 —63.10 —50.12 —49.63 —43.42 —15.46
—0.62 5.53 -10.22 —3.28 —0.07 2.59 6.94

pas (%) —45.98 14.59 —61.46 —50.09 ~49.85 —45.35 —~18.10
—0.62 483 —9.06 —2.87 ~0.08 219 5.83

P32 (%) —46.14 14.26 —59.31 —50.03 —49.92 —46.34 —18.59
—0.62 4.31 —8.14 —2.54 —0.09 1.87 5.00

P36 (%) —46.66 13.33 —58.46 —50.02 —49.96 —47.26 —22.27
—0.62 3.92 —7.39 —2.29 —0.11 1.63 436

pa0 (%) —46.70 12.99 —57.16 —-50.01 —49.98 —47.82 —21.94
—0.62 3.61 —6.80 —2.09 —0.12 1.44 3.88

See notes to Table 1. §; refers to the slope of the autoregression of j-quarter returns. p; refers
to the slope of the autoregression of the stationary component of j-quarter returns. For each
function, the first row refers to the prior and the second row refers to the posterior.

2.3 Optimal forecasts

As noted in the introduction, while B is a measure of return pre-
dictability, it is somewhat arbitrary. The maximum predictability (in
terms of percentage reduction in the forecast error variance) of k-step
ahead forecasts is obtained with 2 = 1. Consider the 1-step ahead
forecast error variance reduction constructed by conditioning on the
infinite past. This value is plotted and tabulated for prior 2 in Figure 3.
This figure shows the prior and posterior densities for the maximum
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Prior and posterior densities for maximum forecastability under prior 2

Maximum forecastability indicates the forecast error variance, conditioning on the infinite history
of returns on the CRSP value-weighted index, as a percent of the unconditional variance. Given
that the long-horizon autoregression coefficient of returns is small, we are interested in a more
general characterization of predictability. Whereas the prior is relatively flat over the possible
range of this ratio, the posterior is more concentrated at 0.

percentage reduction in forecast error variance. We see that the prior is
fairly flat over the range 0 to 1, with median .4, whereas the posterior
is much more concentrated close to 0, with a median of .04.

We also examine the behavior of the 1-step ahead forecast error
variance, as a function of the size of the conditioning set, for prior 2 (as
discussed in Section 1.3 above). Figure 4 contains prior and posterior
densities for the ratio of the 1-step ahead forecast error variance to
the unconditional return variance, constructed by conditioning on 7
lags, for n equal to 1,2,4, and 8 (quarters). Thus, we see that by
conditioning on 2 years of data, the 1-quarter ahead forecast error
variance is about 6% smaller than the (unconditional) variance in the
posterior, whereas the prior is flat. In particular, with 8 quarter lags, the
mean of the posterior density of the ratio of the forecast error variance
to the unconditional variance is 92.6%, and the standard deviation of
this ratio 5.6%. The corresponding mean and standard deviation in
the prior are 50.9% and 31.6%, respectively. We can also see from
Figure 4 that most of the information comes from the first two lags. In
fact, there is virtually no effect on the posterior mean of this variance
ratio of increasing the size of the conditioning set to 300 quarters. For
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Figure 4
Prior and posterior densities for forecastability as a function of the size of the
conditioning set

This figure plots the maximum percent reduction in the 1-step ahead forecast error variance as
a function of the conditioning set for prior 2. The conditioning set is either 1, 2, 4, or 8 lags of
quarterly returns on the CRSP value-weighted index. The priors are fairly flat, and the posteriors
tightly concentrated at 1.

each of the four lag lengths presented in Figure 4, the posteriors are
tightly distributed and suggest very little predictability, even though
the priors are essentially flat using this metric.

Figure 5 characterizes the prior and posterior densities of the im-
pulse response function for prior 2. This figure contains the ninetieth,
fiftieth, and tenth quantiles of the marginal distributions of the impulse
response function from both the prior and the posterior. We note that
the effects of shocks shrinks over the first 50 quarters monotonically
in the prior. On the other hand, there is no indication of any damping
over this period from the posterior. This complements the half-life
function discussed above. Here we see that after 20 quarters, for ex-
ample, looking at the median impulse response functions in the prior,
more than half of the shock has vanished. In the posterior, there is
no indication of any damping. The initial oscillations in the posterior
result from the much larger absolute values of the second through
fourth autoregressive parameters relative to the prior.
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Figure 5

Prior and posterior (bold) densities for impulse response functions

The impulse response function indicates the extent to which an exogenous shock to the CRSP
value-weighted index quarterly returns damps with the passage of time. Here we see that in prior
2 after 50 quarters, a shock has almost no residual effect. In the posterior however, there is no
indication of any damping after 50 quarters. The posterior indicates that there is little predictability
in returns because putatively temporary shocks persist almost indefinitely.

2.4 Inference ,

Since we have assigned zero point mass to the event 5;—"; = 0, we are
not in a position to make inference in the formal sense that this event
is true. As we can see from the posterior densities, and as noted by
Sims (1988) in the context of the unit root test, there is an arbitrari-
ness associated with this event, which in any case is not worthy of
special attention. Furthermore, as noted by Sowell (1991, p. 257), we
have considered “only a small set of priors [and hence,] interpretations
can only be claimed to hold conditional on restricting attention to the
priors considered. Because this set is not exhaustive, the conclusions
cannot be claimed in general.” With these caveats in mind, several
conclusions appear reasonable. First, the relative importance of the
two components is not well identified. However, the persistence of
shocks to the stationary component in all cases considered is shifted
by the likelihood to make these processes virtually nonstationary. This
provides an example of Sims’s (1988) point about the knife-edge na-
ture of classical unit root tests. A stationary process with a half-life of

1054

ZT0Z ‘2T JequisnoN U0 euoZ LY J0 A1SIeAIUN T2 /610°S[eunolploXo's//:dny wolj papeoumod


http://rfs.oxfordjournals.org/

Temporary Components of Stock Returns

26,000 quarters hardly gives rise to predictable patterns in our data.”
This lack of predictability can also be observed in the flat impulse
response functions of the posterior. Once again this is manifest in the
posterior densities of the 8, coefficients, which are tightly distributed
around 0 in all cases. Unlike the priors, these 8 densities do suggest
that small positive values are possible, which is further indication of
the extreme persistence in the posteriors. Finally, although the poste-
rior distributions of 8 suggest that long-horizon returns are not mean
reverting, there is evidence that the prediction error of next quarter’s
return may be reduced somewhat by using the parameters from the
model (a finding that is inconsistent with a random walk).

2.5 Numerical accuracy

As noted above, it is possible to characterize the numerical efficiency
of the Gibbs sampler (i.e., the quadrature) by evaluating the series
of draws for a particular function of interest. To demonstrate this and
to provide the reader with a sense of the numerical accuracy of our
procedure, we present the numerical standard errors (nse) and relative
numerical efficiencies (rne) as described in Section 1 above, for the

2
posterior densities obtained for both o, and %‘5.” Using the Daniell

window to approximate the spectral density at rfrequency 0 (of draws
1,001 to 11,000) from prior 1, the nse (nsep) on o, is .000094 and the
rne (rnep) is .35. The corresponding values using a Parzen window
are nsep = .000083 and mep = .4476. The posteriors from prior
2 yield nsep = .00026, rnep = .25, nsep = .00022, and rnep =
.34. Numerical efficiency is somewhat worse when we examine the

02

function of interest, -%. Here from prior 1 we obtain nsep = .00069,
rmmep = .24, nsep = r.00059, and rnep = .33. Finally, from prior 2,
nsep = .0031, rnep = .24, nsep = .0026, and rnep = .32.

These values show that the preceding analysis of the posterior den-
sities is not affected by numerical inaccuracy, and quantify exactly the

sense to which the results are affected by numerical imprecision.

2.6 Reconciliation with earlier findings
Using a variety of proper priors we have seen that the posterior den-
sity of 8 is tightly centered around zero. This may seem inconsistent

' Note that the nature of the posterior does not depend on whether we specify an AR(2) or an
AR(4) process for z. We do not explore the question of model specification (vis-a-vis m) as the
posteriors do not seem to depend on m.

' Estimation in this context is a nontrivial computational matter. The 11,000 draws from the posterior
require approximately 40 hours of CPU time on a Sparc 10. Note however that once the draws
have been obtained (and stored on disk), analyzing any functions of interest, including the Markov
properties of the draws themselves, is a simple matter.
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with earlier results in the literature that find point estimates for 81,
around —.29. In this subsection, we specify a diffuse prior over the
hyperparameters. For this prior the posterior density closely resem-
bles the sampling distribution for g [Berger (1985), p. 137]. We show
that the diffuse prior on the hyperparameters does not translate into
a diffuse prior on 8 however. The diffuse prior states

Py(6) ox ——. (35)

OOy

Analysis and estimation proceed as above, with different conditional
posterior densities resulting from the application of Bayes’ rule. Here,
we specify an AR(4) as with the two proper priors reported above. The
posterior mean of B, in this case is —.23, with a standard deviation of
.14. The fifth and ninety-fifth percentiles of the marginal posterior are
—.48 and —.05, respectively. The posterior mean (standard deviation)
of %‘; is .35 (0.22), and of p(12) is —.485 (0.02). These results are
similar to frequentist findings and suggest that the data have virtually
no information about g8 (the summary measure of predictability). This
result suggests that the findings using informative priors above are
not the result of a likelihood function that fails to characterize the
properties of the data, rather they result from a specific difference
between the informed priors and the diffuse prior.

In order to understand this set of results, we need to analyze what
effect the diffuse prior has on the functions of interest. Although our
intuition might suggest that this diffusiveness carries over to functions
of the hyperparameters, this may not be so. To analyze the effect of
a diffuse prior on B we can simulate from the priors (as above), al-
though here, this analysis is suggestive and not exact, as the integrals
do not formally exist. Conceptually, we could draw from diffuse priors
on o, and o, by exponentiating a draw from a uniform distribution
over —oo to 00. We draw 4 from the uniform (closed) interval [—3, 3]
independently, and discard those draws where the largest eigenvalue
exceeds 1. The effect of this on B!2 is presented in Figure 6. Here
we see that the diffuse prior on the hyperparameters has a peculiar
effect on the prior of 8. Roughly half of the distribution is at 0 and
the remaining half of the prior is at —.5. Clearly, this prior is far from
diffuse on B and it seems unappealing for the basis of decision mak-
ing. The intuition for this outcome is clear once we see the figure.
The uniform densities on the variances suggests that half of the time,
one of the two variances will be infinitely large relative to the other.

As we would expect, the classical findings may be replicated by an
appropriate choice of prior. The results reported above using proper
priors are materially different from earlier results using frequentist
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The implcation of a diffuse prior on model hyperparameters for 3,,

When a diffuse prior is specified for the hyperparameters, the implications for the autoregression
coefficient for 3-year returns is not obvious. In fact, half of the mass is placed at the minimum
value of —0.5 and half the mass at the maximum value of 0. Not surprisingly, then, when a diffuse
prior is used, the data appear to have little information about long-horizon predictability.

tools. This subsection makes the case that this difference is not the
result of an inappropriate model or likelihood function, rather it arises
from the peculiar (and somewhat unnatural) prior implicit in frequen-
tist analysis.

Conclusions

The question of whether shocks to a time series persist indefinitely,
or whether significant mean reversion is present, is clearly important
for both statistical and economic interpretation of data. This question
has been explored using classical (frequentist) tools, and these tools
have been criticized. In particular, conclusions were reached that the
available data is inadequate to address the question of whether re-
turns consist of a material stationary component (which is quickly
damping). Bayesian or subjective statistical analysis provides a rigor-
ous means of examining the question of how much information is
in a particular sample. The subjectivist treats the data as fixed and
the model parameters as random variables. In fact, by using Bayesian
analysis, we are able to identify the source of imprecision of classical
estimation. The diffuse prior is tantamount to saying that half of the
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time the stationary component is infinitely large relative to the non-
stationary component, and the other half of the time the opposite is
true.

Moreover, a significant appeal of the Bayesian time-series decom-
position used herein is that the entire posterior distribution of any
function of interest is available, conditional on the data that were ob-
served. Thus, we observe precisely the manner in which the data and
the likelihood function combine to yield precision about a particular
parametric restriction. This is in sharp contrast to frequentist estima-
tion, in the presence of a small number of independent observations,
where statements about the power and size of various tests are ad
hoc. We also demonstrated another attractive feature of a Bayesian
approach to this problem: easy computation of the posterior densities
of functions of interest. Not only is this generally infeasible in a fre-
quentist setting, there is controversy about the manner in which the
limits should be taken.

For the class of priors we used, we found that the data are not mute
on the question of long-horizon predictability. The summary measure
of predictability in long-horizon returns (B) is generally very tightly
concentrated around 0 in the posteriors whereas it is more diffuse in
the priors. This results from the fact that the half-life of shocks to the
ﬁaﬁonaqzamnponengforaH;nknsconﬁdeﬂaLissolongastorender
the distinction between predictable and unpredictable over reason-
able forecast horizons moot, a phenomenon that may also be gleaned
from the posterior densities of the impulse response functions, which
show no damping over the first 50 quarters. Finally, while B is an
ad hoc measure of predictability, we note that the data cause us to
revise our priors on the maximum reduction in forecast error variance
toward 0 (and also tighten our beliefs) for all sizes of conditioning
sets.
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