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STOCK SELECTION AND TIMING - A NEW LOOK AT 
MARKET EFFICIENCY I 

GEORGE M. FRANKFURTER AND CHRISTOPHER G .  LAMOUREUX* 

INTRODUCTION 

In this paper it is shown that stock returns do not conform to a random walk 
model, nor to the more general martingale model, but nevertheless the stock 
market is weak-form efficient. This result is not surprising when we recall that 
risk-averse investors are typically concerned with more than the first moment 
of a security return’s distribution, and market efficiency is appropriately deter- 
mined in terms of (expected) utility - not profits alone. Extant tests of market 
efficiency have ignored this point. 

By examining the first two moments of return distributions, and by not 
assuming any form of equilibrium pricing model, we provide tests of weak- 
form market efficiency which are more powerful than prior studies. 

A market is considered informationally efficient if market prices ‘fully reflect’ 
information. The (sub)set of information presumed to be reflected determines 
the particular form of market efficiency. The market is said to be efficient in 
the weak-forms if market prices fully reflect the past realizations of market 
prices. Extant tests of the weak-form of market efficiency (e.g., Fama, 1970; 
Fama and Blume, 1966; and Mandelbrot, 1966) examine whether informa- 
tion on past price movements can be exploited to enhance profit. These tests 
assume that investors looking to profit from ‘trend’ data are risk-neutral. 
However, the normative theory of portfolio selection due to Markowitz (1952), 
and positive theories of capital asset pricing (e.g., Sharpe, 1964) are developed 
assuming that investors are risk-averse, 

This paper fills a gap in the literature by testing the informational efficiency 
of the stock market by exploring whether or not gains in CXpGGtcd utility are 
attainable by utilizing the time series of past stock prices. In particular, since 
Sharpe (1963), a simple algorithm has been available for risk-averse investors 
to use in selecting optimal portfolios. Normative Portfolio Theory of Markowitz 
(1952) (N.2“) suggests the use of historical data to obtain estimates of expected 
return and risk, and then apply a mathematical programming algorithm to 
build Mean-Variance (E- V) efficient portfolios. Surprisingly, studies that have 
tackled the timing question have done so in a vacuum vis-B-vis optimal (E- V) 
portfolio selection. 

The authors are respectively, Lloyd F. Collette Chair of Financial Services; and Assistant Pro- 
fesaor of Finance at Louisiana State University, Baton Rouge, Louisiana. (Paper received August, 
1986, revised October 1986) 
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In the next section of this paper we present a review of Martingales, Ran- 
dom Walks, Market EEciency and Market Equilibrium. The subsequent sec- 
tion describes the data and methodology of the present study. The next sec- 
tion contain$ the Results and Interpretations. The final section concludes and 
summarizes the paper. 

MARTINGALES, RANDOM WALKS AND MARKET EFFICIENCY 

Martingales 

The notion that the stochastic process that generates stock prices is a martingale 
is now generally accepted by financial economists. (See for example: Alchian, 
1974; Fama, 1965; Mandelbrot, 1966; and LeRoy and LaCivita, 1981.) A mar- 
tingale is a stochastic process (Xi),  where, for all i = l, 2, . . . : 

(See, e.g. Karlin and Taylor, 1975, p. 238.) This is often called a ‘fair game’ 
since the expected future value of the variable is equal to its most recent realiza- 
tion. To deal with either or both of: 

1. The fact that stocks are risky assets and investors are risk averse; and 
2. The’notionof time preference (i.e., the ‘time value of money,’) in a risk 

neutral environment, 

The martingale model is modified. The appropriate modification is known as 
a submartingale. In a submartingale, the expected value of the variable is at 
least its most recent realization. 

In a market characterized by risk-neutral, price-taking investors, the 
(sub)martingale model is appropriate if arbitrage profits are eliminated. A proof 
of this proposition is found in LeRoy (1973). Samuelson (1965 and 1971) shows 
that when investors (even risk-averse investors) have an exogenously deter- 
mined positive required rate of return, the (sub)martingale model must describe 
the stock price generating process. But LeRoy (1973) points out that in a general 
case, when investors are risk averse, there is no theoretical justification of the 
(sub)martingale property for stock returns or prices. Arbitrage arguments in 
this case would imply that investors cannot exploit the series of historical returns 
(or prices) to enhance utility, regardless of ‘profit’, or expected return. 

Environments characterized by the absence of arbitrage profits are generally 
accepted in the state-of-the-art finance literature. If arbitrage were possible (and 
the gains exceed transactions costs), someone (or many) would take advan- 
tage of the situation to make a riskless profit, thereby eliminating the oppor- 
tunity. This type of argument underlies the paradigms of finance (e.g., the 
Modigliani and Miller irrelevancy propositions, Option Pricing Theory, and 
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the positive models of capital asset pricing). If economic agents are risk averse, 
the appropriate arbitrage arguments deal not with ‘profits’ or expected return, 
but rather with expected utility. 

Random Walks 
A less general process than the martingale model is the random walk. If suc- 
cessive returns are independent, identically, distributed (iid), the return 
generating process is some form of random walk, (cf. Karlin and Taylor, 1975). 
Retaining the notation of equations 1 and 2, in a random walk model: for all 
i = 1 ,2 ,  ..., 

AK+J = JVJ (3) 
Thus, the martingale (which places restrictions on the first moment of the 
distribution only) is a special case of the random walk, (all random walks are 
martingales, but not vice-versa). Naturally, if the return generating process 
of stock returns is either (parametrically) Gaussian, or general stable Pareto- 
Levy, stock returns follow a random walk. This is so, since the application 
of these models to stock returns requires the assumption that stock returns are 
indeed iid random variables. 

Samuelson (1982), however, is not willing to accept the hypothesis that stock 
returns conform to a random walk. His reasoning is that all assets (e.g., a share 
of stock) have an intrinsic value dictated by ‘economic law’. The random walk 
model implies that there is a positive probability of large deviations in price 
from that value. 

Eficimt Markets 

Fama (1970) describes an ‘efficient market’ as one in which prices ‘fully reflect’ 
all information. Three degrees of market efficiency are delineated with respect 
to the information set which is assumed - or posited - to be reflected in the 
price. In the context of timing, where the issue is the ability to exploit past 
trends in the data, the Weak Form of Market Efficiency is pertinent. The market 
is said to be efficient in the weak form if present prices ‘fully reflect’ the historical 
return series. This implies that no arbitrage opportunities exist vis-84s the 
trends of the data. The semi-stmng form of market efficiency describes a market 
where all publicly available information is ‘reflected’ in asset prices. The strong 
form of market efficiency requires all information to be ‘reflected’ in asset prices. 

Despite its intuitive appeal, the notion of ‘fdly reflecting’ is void of empirical 
content. Any test of market efficiency contains a test of (at least) two distinct 
hypotheses: 

1. That the market is efficient; and 
2. The manner by which assets are (efficiently) priced. 
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Most of the testing of the weak form of market efficiency has focused on 
the martingale model: Can investors p~ofi t  by exploiting the trend in prices or 
returns? ‘Profit’ in this context involves the ability to achieve a higher return 
over time than one would attain without building trends into his selection model. 
Technical Analysts (or Chartists) on Wall Street convince some investors that 
they can do just that. 

An example of empirical work which tests weak form market efficiency is 
the filter rule approach. Alexander (1964) reports that by using a filter enhanced 
profits are possible. A filter in this context works as follows: If it is true that 
returns are positively serially correlated, a large return last period is a good 
indication of a large return this period. An x% filter rule would have the investor 
buy those stocks subsequent to periods when their returns exceed x% . Hold 
these stocks until their return falls by x %  . Most of the studies involving filter 
rules involve daily stock return data. As Fama and Blume (1966, p. 228) ex- 
plain, Alexander’s filter rule is designed to ‘test the belief, widely held among 
market professionals, that prices adjust gradually to new information’. 

The professional analysts operate in the belief that there exist certain trend generating 
facts, knowable today, that will guide a speculator to profit if only he can read them 
correctly. These facts are assumed to generate trends rather than instantaneous jumps 
because most of those trading in speculative markets have imperfect knowledge of 
these facts, and the future trend of price will result from a gradual spread of awareness 
of these facts throughout the market (Alexander, 1964, p. 7) 
Mandelbrot (1963, pp. 417-418) explains that Alexander’s results are 

spurious since Alexander assumes that orders can be implemented continuously 
and he does not consider the effects of transaction costs. When these factors 
are taken into consideration, the trading rule approaches yield lower returns 
than a simple buy and hold strategy. In subsequent work, Fama and Blume 
(1966) show that the only ones who could prosper from filter rules are brokers. 
This is taken as evidence in support of the martingale model of stock returns 
and weak form market efficiency. 

Another test of the martingale model is Granger and Morgenstern’s (1963) 
application of spectral analysis to stock prices. They obtain the result that trends 
in stock prices do not exist. Spectral analysis is a fairly weak tool though and 
only yields the specified results in the special case of normally distributed variates 
(i.e., the limiting case when no correlation implies independence, or where 
all martingales are random walks). (See Mandelbrot, 1966, p. 245, fn. 3.) 

Market Equilibrium 

If investors are risk averse, expected utility maximizers, it does not necessarily 
follow that stock returns conform to a martingale model. Only if risk averse 
investors have an exogenously determined positive required rate of return does 
this result follow a fortiori. Further, if investors are expected utility maximizers 
with an exogenously determined rate of return, absence of arbitrage oppor- 
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tunities implies that a random walk must hold - at least as concerns the 
distributional moments of relevance to investors. However, there is no justifica- 
tion to pre-suppose the martingale model. All that the arbitrage proof requires 
is that investors not be able to enhance utility by exploiting trends of past data. 
In other words, it is possible to imagine an environment where trends do exist 
in stock returns, but this trend is not erased by arbitrage as riskiness also 
increases along a similar trend. Only in the case where investors are risk neutral 
will such a trend be eliminated by arbitrage. 
This is of course consistent with the Markowitz (1952) portfolio selection 

framework. In the Markowitz context, the investor enhances (expected) utility 
by exploiting historical data. He uses this information to make inferences about 
the various return generating processes. Presumably, if the processes are sta- 
tionary over time, the investor need not be concerned about the timeliness of 
the data. His concern is with the richness of the data and his ability to estimate 
the nature of the return generating process. In the Markowitz framework, there 
is no question of timing or portfolio revision. The only changes a Markowitz 
investor need make over time would be due to increased insight provided by 
additional data. 

With the notable exception of LeRoy (1973) and LeRoy and LaCivita (1981), 
the scientific exploration of the nature of stock return series and market effi- 
ciency has been done outside of the Markowitz portfolio selection context. As 
evidence mounts as to the general validity of the Markowitz algorithm (cf. 
Frankfurter and Lamoureux, 1987; and Kroll, Levy and Markowitz, 1984), 
it becomes imperative to judge the efficiency of the market in the Markowitz 
context. 

We wish to examine whether the market is Markowitz-efficient. That is, can 
investors beat - in expected utility terms - the Markowitz buy and hold 
strategy by exploiting trends in the data - through a superimposed filter rule. 
This test makes no assumption about the nature of equilibrium asset pricing. 
We allow the data to speak for themselves. Thus we are not jointly testing market 
efficiency along with some pricing model. 

As an example of an environment which is inconsistent with a Markowitz 
efficient market, Mandelbrot (1963, pp. 418-419) states that large changes 
of price, of random sign, tend to be serially correlated. This phenomenon is 
used as part justification of the stable Pareto-Levy model with respect to 
speculative price changes. If this observation were, in fact true, then the stock 
return generating process would be a martingale - not a random walk - with 
serially correlated I Ti . 

Merton (1981) also addresses the question of ‘market timing’. Several 
empirical studies (e.g., Henrikkson, 1984; Henrikkson and Merton, 1981; and 
Kon, 1983) have been baaed on Merton’s model. This approach, however, 
is very different from what has generally been classified under the rubric of 
‘market timing’, and is also different from the approach taken herein. Merton 
derives the equilibrium value of a portfolio manager’s ability to predict those 
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time periods in which fixed income securities will outperform stocks and vice- 
versa. Of course, the idea that bond returns will outperform stock returns ‘ex- 
ante’ is inconsistent with the joint hypotheses of risk aversion and equilibrium 
(or the absence of arbitrage opportunities). Merton’s model and subsequent 
studies based thereupon, are mentioned only as a point of reference. 

METHODOLOGY AND DATA 

The Data 

The data for this study consists of 906 stocks’ monthly returns for the period 
May, 1963-December, 1981 taken from the CRSP tape. Only those stocks 
with 224 (contiguous) legitimate returns are selected. The three estimators to 
Sharpe’s diagonal selection algorithm (linear slope, intercept, and conditional 
variance), are estimated using the entire 224 months of data. The diagonal 
model, i.e., 

7, = a; + pi ?I 

is estimated by ordinary least squares (OLS): 

ri, = &, + &,, + ei2 
where: 

?* = the random variable representing the rate-of-return on security i, 
1;, = leeturn on security i in period t ,  
&, = the (OLS) linear intercept term, 
8, = the (OLS) linear slope, 
?, = random rate of return on the index (here: CRSP equal weighted 

index), 
e,, = OLS error term of security i in period t ,  and 
the caret represents OLS estimators. 

The h,, 8;’ and #(ZJ from (2) of the stocks in the selection universe, along 
with E(FI) and d(fI), are used as inputs to the Sharpe (1963) optimal portfolio 
selection algorithm which generates the appropriate E- V frontier of efficiency 
in each case.‘ 

The experiments involve revision of the universe from which the investor 
selects the optimal portfolio. Those stocks which are desirable (in a timing con- 
text) are included in the selection sub-universe; alternatively, those stocks which 
are undesirable are excluded. Portfolios are selected at the beginning of each 
of the 201st through 224th periods according to the Markowitz-Sharpe criterion 
- from the stocks qualifying in each period. Thus, an investor would select 
a security using the superimposed filter rule, only if it is desirable in both an 
E- V context and a timing context. Earlier filters forced a timing desirable stock 
on the investor. 
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Now, in ex-ante terms it is clear that no rule which excludes securities from 
the selection set can generate portfolios which are superior in Mean-Variance 
space to those selected from the entire universe. Evaluation of the various techni- 
ques is therefore in ex-post terms. The actual portfolio returns are generated 
for each of the 24 periods and in this fashion the techniques are comparable. 
The ex-post return used is the geometric mean return of the 24 actual returns 
in each period. The ex-post risk measure is the sum of the squared deviations 
between the actual return in each period and the expected return in that period. 
This is adjusted for sampling by dividing it by the number of periods minus 
one. Risk is an ex-ante concept. Ex-post a certain return was realized with 
probability one. This method is consistent with the portfolio evaluation literature 
(e.g., Jensen, 1969; and Sharpe, 1966) - where realized returns are adjusted 
according to ‘ex-ante’ risk. The measure of risk used here is an indication of 
performance versus expectation in each period. 

There is no theory which assures - nor is there any reason to assume - 
that Markowitz selected portfolios, which are ex-ante efficient, will dominate 
all other portfolios, ex-post. Accordingly, no conclusions could be drawn by 
looking at the results from a single period. The 24 month period is considered 
long enough to average out deviations from expected values. For comparison 
purposes the ratio of return to risk is used. Once again, this is consistent with 
the portfolio evaluation literature. 

To make the comparisons manageable three portfolios from the Mean- 
Variance Efficient Frontier are evaluated. The three are chosen in each instance 
based upon the shadow price - or dual value - from the Markowitz-Sharpe 
algorithm. The dual value (or A) represents the marginal gain in (expected) 
return from risk reduction. It is thus a measure of investors’ relative aversions 
to risk. The NE corner portfolio (when return is on the ordinate and risk on 
the abscissa) has a dual value of zero, since no more gain in expected return 
is possible. The SW corner portfolio has a dual value of infinity since no fur- 
ther risk reduction is possible. Portfolios with common dual values would be 
chosen by the same investor under the various regimes and thus can be direct- 
ly compared.‘ The dual values chosen in this study are from the middle range 
of the Efficient Frontier. Portfolio 1 has 38 stocks in the no-exclusion case (A 
of 5.7). Portfolio 2 has 55 stocks in the universal case (A of 12.6). Portfolio 
3 has 62 stocks in the no-exclusions case (A of 18.0). By avoiding the two 
extremes of the Efficient Frontier the sampling error problems discussed by 
Frankfurter and Lamoureux (1988) are neutralized. 

Estimation 

There is an estimation factor accompanied with timing which is hdd constant 
in this anulysis. After each period’s realization, there is another observation to 
facilitate estimation. The three inputs to the Sharpe-Markowitz algorithm 
should be revised using all available data - portfolios revised accordingly. In 
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the present study these three values are estimated using the entire 224 month 
period. These values are thus treated as parameters, enabling ‘ceteris to be 
paribus’ in this study of market eaciency. This particular aspect of portfolio 
theory - optimal revision - is treated by Bloomfield, Leftwich and Long 
(1977) who show that frequent portfolio revisions provide inferior results ver- 
sus a buy-and-hold strategy, especially when transactions costs axe considered. 

RESULTS AND INTERPRETATION 

Benchmark 

The ex-ante and ex-post return, risk and return-to-risk ratio (performance 
measure) for the universal, no-timing selection for each of our three efficient 
portfolios are shown in Table 1. Panel A presents the ‘ex-ante’ return and risk 
characteristics of portfolios selected from the entire universe for each of the 
three levels of A. Panel B, of Table 1 shows the ‘ex-post’ results over the twenty- 
four months for these three portfolios. This is the benchmark against which 
the portfolios obtained by applying the timing filters are to be compared. 

Table 1 

Universal Case 

Panel A ‘Ex-Ante’ 
Expected Return Variance E N  

Portfolio 1 
Portfolio 2 
Portfolio 3 

0.022 12 0.00123 17.98 
0.01955 0.00061 32.00 
0.01724 0.00045 38.31 

Panel B ‘Ex-Post’ 
Geometric Mean Return Variance E/V 

Portfolio 1 0.00864 0.00047 18.21 
Portfolio 2 0.01055 0.00051 20.52 
Portfolio 3 0.01017 0.00045 22.52 

Violation of Random Walk Proper9 

If stock returns do follow a martingale, (whether or not a random walk), it 
may be possible for an investor to enhance utility by studying trend data. To 
test Mandelbrot’s proposition that large changes in price of random sign are 
serially correlated, the absolute value of a stock’s monthly return I Y ~  is regress- 
ed against its two period lag, lri,t-21, using OLS. This is an instrumental 
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variable for the one period lag which provides consistent regression estimators 
of the one month lag. Of the 906 stocks in the sample, 200 appear to have 
serially correlated absolute values of monthly returns at the five percent level 
of significance. All 200 of these serial correlations are positive. (With daily 
returns, all of the 906 stocks have serially correlated absolute value returns 
at the one percent level of significance. With weekly returns, 314 stocks have 
serially Correlated absolute value of returns at the one percent significance level.) 

As far as ‘market efficiency tests’ are concerned, in this study the statistical 
question of serial correlation is not particularly relevant. The question is: can 
investors exploit any correlation (be it ‘statistically significant’ or not). 

Other things being equal, a risk averse investor would choose to avoid large 
price changes of random sign. With this in mind, the filter rule is applied to 
the relevant set: 

1. The entire universe of 906 stocks; or 
2. The subset of 200 stocks which violate the serial independence of l?d, 

such that stocks with large Ir,-ll are excluded from the selection sub-universe 
in period t .  

are ranked in ascending order 
for each stock, and quantile values are obtained. These quantile values are 
used as the appropriate fdter. In this fashion risk is distinguished from the trend 
of If1 (as stocks with a higher variance of returns would tend to be generally 
excluded if a simple x% filter rule were applied). 

Table 2 shows the realized geometric mean returns, the dispersion between 
realized and expected returns, and the performance measure for the three port- 
folios when the first application of the filter rule is applied. As an example, 
in Panel A, a stock i is rejected from the selection sub-universe in period t if 
its absolute value return in period t-1 exceeds the 20th quantile of the series 

We report in Table 3 the realized values for portfolios selected by first 
applying the filter rule to the absolute value of last period’s return only to those 
200 stocks with serially correlated absolute value returns. As an example, in 
Panel A the three portfolios were selected by applying the Markowitz-Sharpe 
algorithm to the sub-universe consisting of all 706 stocks with nonserially cor- 
related absolute value returns and those stocks from amongst the other 200 
stocks whose last period’s absolute value return was less than the 10th quan- 
tile of that series. 

When the filter is applied to all stocks, no reductions in ‘realized risk’ are 
achievable, Slight reductions in risk are attained when the rule is applied to 
the 200 stock subset. The 10th and 20th quantile rules accomplish this risk 
reduction the best, There is no justification, therefore, to support the random 
walk model (at least as applies to the 200 stocks in the ‘violation subset’). The 
reductions in risk are achieved only at a high opportunity cost in realized return, 
which would be severely enlarged by transactions costs. Comparing Tables 

To quantify ‘large’ in this application, the 

174. 
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Table 2 

Violation of Random Walk? 
Filter Rule Applied to AH Stocks 

Panel A: 20th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel B: 30th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel C: 50th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel D: 60th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel E: 70th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel F: 75th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel G: 85th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel H: 95th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Geo.Mn. Ret. 
0.0090265 
0.0090828 
0.0071430 

Geo. Mn. Ret. 
0.0097456 
0.0115366 
0.0060720 

Geo. Mn. Ret. 
0.0048599 
0.0069609 
0.0055810 

Geo.Mn.Ret. 
0.0056381 
0.0054426 
0.006894 1 

Geo. Mn. Ret. 
0.0044303 
0.0098240 
0.0062008 

Geo.Mn. Ret. 
0.0014238 
0.0016508 
0.0018501 

Geo.Mn. Ret. 
0.0008860 
0.001 5697 
0.0013752 

Geo. Mn. Rct. 
0.0081 54 
0.002 1868 
0.0019741 

Dispersion 
0.00447 14 
0.0028400 
0.0025656 

Dispnsion 
0.0046550 
0.0036042 
0.0033629 

Dispersion 
0.00 181 44 
0.00 14039 
0.0012155 

Dispersion 
0.0017660 
0.0014497 
0.0014469 

Dispersion 
0.0018553 
0.00161 98 
0.0015527 

Dispersion 
0.0011650 
0.00 10084 
0.0006936 

Dispersion 
0.001 1849 
0.0010727 
0.0008688 

Dispersion 
0.001 1879 
0.001 1368 
0.0009716 

Per. Mn.  
2.08 
3.20 
2.78 

Per. Mn. 
2.09 
3.20 
1.81 

Per. Msr. 
2.68 
4.96 
4.59 

Per. Msr. 
3.19 
3.75 
4.75 

Per. Mst. 
2.39 
5.85 
3.99 

Per. Msr. 
1.23 
1.64 
2.67 

Per. Mu. 
0.75 
1.46 
1.58 

Per. Msr. 
0.69 
1.92 
2.03 
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Table 3 

Violation of Random Walk? 
Filter Rule Applied to 200 Stock Subset Only 

Panel A: 10th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel B: 20th @antile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel C: 30th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel D: 50th *tile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel E: 60th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel F: 70th @antile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel G: 75th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel H: 85th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel I: 95th Quantile 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Gea.Mn. Ret. 
0.0034752 
0.0026636 
0.0025835 

Geo. Mn. Ret. 
0.0033951 
0.0026312 
0.0027647 

Geo. Mn. Ret. 
0.0033789 
0,00264 1 7 
0.002 7304 

&. Mn. Ret. 
0.0033369 
0.0025988 
0.0032988 

&.Mn. Rat. 
0 .0032988 
0.0025845 
0.0026798 

Geo. Mn. Ret. 
0.0032320 
0.0025663 
0.0024500 

Geo.Mn. Ret. 
0.0032663 
0.0025921 
0.0025463 

Geo. Mn. Rat. 
0.0032244 
0.0025587 
0.002 7 2 18 

Geo. Mn. Ret. 
0.0032692 
0.0025558 
0.0026522 

Dispersion 
0.0005212 
0.0003687 
0.0002750 

Dispersion 
0.0005239 
0.0003700 
0.0002765 

Dispmiml 
0.0005346 
0.0003695 
0.0002 7 50 

Dispersion 
0.00053 18 
0.0003738 
0.0005348 

Dispersion 
0.0005348 
0.0003750 
0.0002785 

Dispersion 
0.0005348 
0.0003766 
0.0002900 

Dispersion 
0.0005346 
0.0003769 
0.0002777 

Dispersion 
0 BOO537 1 
0.00038 14 
0.0002813 

Dispersion 
0.00053 74 
0.0003839 
0.0002933 

Per, Msr. 
6.67 
7.22 
9.39 

Per. Msr. 
6.48 
7.11 
10.08 

Per. Msr. 
6.41 
7.15 
9.93 

Per. Msr. 
6.27 
6.95 
6.17 

Per. Msr. 
6.17 
6.89 
9.62 

Per. Msr. 
6.04 
6.81 
8.45 

Per. Msr. 
6.11 
6.88 
9.17 

Per. Msr. 
6.08 
6.71 
9.68 

Per. Msr. 
6.08 
6.66 
9.04 



396 FRANKFURTER AND LAMOUREUX 

2 and 3 with Table 1 shows that the no-exclusion case performance measures 
exceed the performance measures under the filter rules. There is no reason, 
therefore, to reject the hypothesis that the stock market is weak form efficient. 

Violation of Martingale Property 

It is possible that stock returns violate the random walk property, but conform 
to the martingale property. To ascertain whether stocks’ monthly price realiza- 
tions violate the martingale property, we test whether Y, and r,-, are correlated. 
Towards this end the monthly returns of each of the 906 stocks over the 20 
year period are regressed against the two month lagged return. The two month 
lag return is used as an instrumental variable for the one month lag. Under 
the null hypothesis, this provides a consistent estimator of the coefficient of 
the one period lag. Of the 906 stocks, 106 appear to have serially correlated 
returns at a five per cent level of significance. All but five of these 106 stocks 
have an inverse correlation between r, and rfv1. 

As before, our concern is not with the statistical mask of the data rather with 
the ability of investors to exploit trends, regardless of their statistical significance. 
To test whether utility enhahcement is possible by utilizing this type of trend 
data, filter rules are applied to define the selection sub-universe in two fashions: 

1. The rule is applied to the entire universe of 906 stocks; and 
2. The rule is applied only to the subset of the 106 stocks which appear to 

violate the martingale property. 

Table 4 shows the ex-post realizations over the 24 months period for the three 
portfolios for various filter rules (indicated inside each panel) as applied in 
Method 1 above. In this application all stocks are subjected to the same filter 
rule in each period. As an example, Table 2, Panel A shows the case whereby 
if a stock’s return in period t-1 were greater than zero, that stock is excluded 
from the selection sub-universe in period t (as indicated by the table heading. 
‘rf-l . . . Include’). 

In Table 5, the filter rule is applied only to the 106 stocks which appear 
(statistically) to violate the martingale property. For the five stocks which have 
positively correlated monthly returns, the filter rule is inverted. As an exam- 
ple, in Table 3, Panel A, all sub-universes include the 800 stocks whose mon- 
thly price realizations conform to the martingale model. The 106 stocks with 
negative serial correlation of monthly returns are subjected to the following 
filter: if last period’s return were less than -5 percent include that stock in this 
period’s sub-universe. For the five stocks with positively serially correlated mon- 
thly returns, the corresponding filter rule is: if last period’s return were greater 
than 5 percent, include that stock in the selection universe for this period. 

Out of the numerous experiments we performed, the above tabIes present 
a sample only. None of the many filter rules applied did better than those 
reported. Note that by using the filter rules, it is possible to realize a greater 
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Table 4 

Potential Martingale Violation Filter Rule Applied to Entire Universe 

Panel A: rr-l < 0.0 Include 
&.Mn. Rat. 

Portfolio 1 0.0024767 
Portfolio 2 0.0001392 
Portfolio 3 0.0076942 
Panel B: r,, < -0.04 Include 

&.Mn. Ret. 
Portfolio 1 0.0043783 
Portfolio 2 0.0005128 
Portfolio 3 0.0052853 
Panel C: rtWl < -0.08 Include 

Geo.Mn. Ret. 
Portfolio 1 0.0118504 
Portfolio 2 0.0110531 
Portfolio 3 0.01 40800 
Panel D: r,-l < -0.12 Include 

&.Mn. Rct. 
Portfolio 1 -0.0133600 
Portfolio 2 -0.0111470 
Portfolio 3 0.01260000 
Panel E: rr-, < -0.16 Include 

&.Mn.Rct. 
Portfolio 1 -0.01 72000 
Portfolio 2 -0.008 1000 
Portfolio 3 0.001 41 900 

Dispersion 
0.0019860 
0.0022713 
0.0005225 

Dispersion 
0.0005 103 
0.0002975 
0.0002662 

Dispersion 
0.0012970 
0.0010724 
0.001 0020 

Dispersion 
0.001 683 7 
0.0013278 
0.0018548 

Lhspmsion 
0.0027600 
0.0013700 
0.001 1880 

Per. Msr. 
1.25 
0.06 

14.73 

Per, Msr. 
8.58 

17.24 
19.86 

Per. Msr. 
14.27 
10.31 
14.05 

Per. Msr. 
7.94 
8.39 
6.79 

Per. Msr. 
-6.23 
-5.91 

1.19 

return than in the case where no such rule is applied. A comparison of Panel 
C of Table 4 with Panel B of Table 1, shows that by applying a -8 percent 
fdter rule gains in realized return are achieved in Portfolios 2 and 3. The gain 
in Portfolio 3’s return is rather dramatic. A return of 1.4 percent per month 
with the filter rule, versus only 1.0 percent without it. This gain in realized 
return is more than offset, however, by increased realized ‘risk’. This is apparent 
by comparing the performance measures under each regime. Under no case 
does any ‘fdtered’ portfolio have a higher performance measure thaTn in the 
no fdter case. It is also surprising that treating stocks differently based on their 
statistical serial correlation does generally worse than the case where all securities 
are subjected to the filter. 

Based on these experiments, the martingale model as fits security price 
realizations must be rejected. Gains in realized returns are possible by exploiting 
the trend in the data - even with monthly returns! There is no cause, however, 
to reject the weak form hypothesis of market efficiency, as gains in utility (as 
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Table 5 

Apply Martingale - Type Filter to 106 Stock Subset Only 

Panel A: 5% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Panel B: 5.5% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Panel C: 6% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel D: 6.5% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel E: 7% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 
Panel F: 8.5% Rule 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Geo.Mn. Rot. 
0.0031996 
0.0026188 
0.0024290 

Geo.Mn. Ret. 
0.00320 15 
0.0026178 
0.002471 9 

Go. Mn. Ref. 
0.003 1996 
0.0026188 
0.0023746 

Go.Mn. Ret. 
0.003 1996 
0.0026 159 
0.0026 159 

Geo. Mn. Ret. 
0.003 1986 
0.00261 69 
0.0025578 

G o .  Mn. Ret. 
0.003 1986 
0.0026121 
0.0023727 

Dispersion 
0.0053300 
0.0003899 
0.0002858 

D i s p n S W n  
0.0005324 
0.0003900 
0.0002830 

Disparsion 
0.0005321 
0.0003903 
0.0002865 

Dis@rsion 
0.0605321 
0.0003908 
0.0002804 

&@rSWn 
0.0005318 
0.0003910 
0.0002789 

Dispersion 
0.00053 18 
0.0003916 
o.oO029o 1 

Per. Msr. 
6.23 
6.72 
8.50 

Per. Msr. 
6.01 
6.71 
8.73 

Per. Msr. 
6.01 
6.71 
8.29 

Per. Msr. 
6.01 
6.69 
9.00 

Per. Msr. 
6.01 
6.83 
9.17 

Per. Msr. 
6.01 
6.67 
8.18 

measured ‘ex-post’ by the ‘Performance Measure’) are not possible by 
exploiting trends. 

CONCLUSIONS 

The results of these experiments may be simply stated: the filter techniques 
applied to the monthly data do not offer any benefits above a simple buy-and- 
hold strategy. For the theory of finance and the nature of stock returns, the 
results arc not 50 simple and up-end almost all previous research on the behavior 
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of stock returns. First, the theoretical distinction between market efficiency on 
the one hand, and the martingale andor random walk nature of speculative 
price changes on the other hand is clarified. It is possible (and is done here) 
to reject both the random walk model and the martingale model as applied 
to stock prices and accept the weak-form market efficiency hypothesis. 

Market efficiency is appropriately determined in (expected) utility terms. 
Ad-hoc theoretical restrictions on the napm of security returns will only 
necessarily imply weak-form market efficiency when coupled with specific 
assumptions about the nature of investors’ (expected) utility functions. Thus, 
trends in a return series that might be exploited to increase profits are only 
necessarily inconsistent with weak-form market efficiency if investors are risk 
neutral. 

The Markowitz model is the best (cf. Frankfurter and Lamoureux, 1987; 
and Kroll, Levy, and Markowitz, 1984) normative model of stock selection 
available. It is surprising that previous attempts to empirically explore the ques- 
tion of market efficiency do 80 iR a vacuum. By tying the Markowitz model 
into such empirical explorations the ideas behind timing and selection are inter- 
woven, and stronger support for the hypothesis of market efficiency is achieved. 

NOTES 

1 Applying the market model (or single-index model) in this context makes no wumption via& 
via the equilibrium risk-mum relntionship in the market. It is simply a meana of parsimonioudy 
approximating the inter-relationships among all of the accuritiea (cf. Frankfurter, Phillips, and 
Scagle, 1976). 
This dirrct comparison is theoretically only valid for an investor with homothetic preferences 
(i.c., for whom the income expanoion path in E-Yspacc is a ray, i.e., Xis not dependent upon 
wealth). The portfolios using the filter arc dominated in E-V space by other portfalion along 
the standard frontier, making the efficiency conclusion general. 

2 
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